Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Dermatol Sci ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38806323

ABSTRACT

BACKGROUND: Vitiligo is a skin disorder with melanocyte destruction caused by complex interplay between multiple genetic and environmental factors. Recent studies have suggested DNA methylation is involved in the melanocyte damage, but the underlying mechanism remains unknown. OBJECTIVE: To explore the abnormal DNA methylation patterns in vitiligo lesional and nonlesional skin, and the mechanism of DNA methylation involved in vitiligo pathogenesis. METHODS: Initially, the genome-wide aberrant DNA methylation profiles in lesional and nonlesional skin of vitiligo were detect via Illumina methylation EPIC 850k Beadchip. Subsequently, a comprehensive analysis was conduct to investigate the genomic characteristics of differentially methylated regions (DMRs). Furthermore, the effects of key aberrant methylated genes on cell apoptosis and function of both melanocytes and keratinocytes were further identified and validated by western bloting, ELISA, and immunofluorescence. RESULTS: Compared with nonlesional skins, we discovered 79 significantly differentially methylated CpG sites in vitiligo lesions. These DMRs were mainly located in the gene body and the TS1500 region. Annexin A2 receptor (ANXA2R), a crucial gene in cell apoptosis, was hypermethylated in vitiligo lesions. Furthermore, we showed that ANXA2R displayed hypermethylation and low expression levels in both keratinocytes and melanocytes of vitiligo patients, and the hypermethylated-triggered downregulation of ANXA2R under oxidative stress induced melanocyte apoptosis, and inhibited the secretion of stem cell factor (SCF) from keratinocytes thus impaired the survival of melanocytes. CONCLUSIONS: Our study illustrates the DNA methylation modification in vitiligo, and further demonstrates the molecular mechanism of hypermethylated ANXA2R in the dysfunction of melanocytes under oxidative stress.

2.
Aging (Albany NY) ; 16(1): 648-664, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38194722

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a common chronic age-related joint disease characterized primarily by inflammation of synovial membrane and degeneration of articular cartilage. Accumulating evidence has demonstrated that Danggui-Shaoyao-San (DSS) exerts significant anti-inflammatory effects, suggesting that it may play an important role in the treatment of knee osteoarthritis (KOA). METHODS: In the present study, DSS was prepared and analyzed by high-performance liquid chromatography (HPLC). Bioinformatics analyses were carried out to uncover the functions and possible molecular mechanisms by which DSS against KOA. Furthermore, the protective effects of DSS on lipopolysaccharide (LPS)-induced rat chondrocytes and cartilage degeneration in a rat OA model were investigated in vivo and in vitro. RESULTS: In total, 114 targets of DSS were identified, of which 60 candidate targets were related to KOA. The target enrichment analysis suggested that the NF-κB signaling pathway may be an effective mechanism of DSS. In vitro, we found that DSS significantly inhibited LPS-induced upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP3), and matrix metalloproteinase-13 (MMP13). Meanwhile, the degradation of collagen II was also reversed by DSS. Mechanistically, DSS dramatically suppressed LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vivo, DSS treatment prevented cartilage degeneration in a rat OA model. CONCLUSIONS: DSS could ameliorate the progression of OA through suppressing the NF-κB signaling pathway. Our findings indicate that DSS may be a promising therapeutic approach for the treatment of KOA.


Subject(s)
Drugs, Chinese Herbal , NF-kappa B , Osteoarthritis, Knee , Rats , Animals , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Signal Transduction , Inflammation/metabolism , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Chondrocytes/metabolism
3.
J Pathol ; 262(4): 441-453, 2024 04.
Article in English | MEDLINE | ID: mdl-38186269

ABSTRACT

Vitiligo is a depigmented skin disease due to the destruction of melanocytes. Under oxidative stress, keratinocyte-derived chemokine C-X-C motif ligand 16 (CXCL16) plays a critical role in recruiting CD8+ T cells, which kill melanocytes. Autophagy serves as a protective cell survival mechanism and impairment of autophagy has been linked to increased secretion of the proinflammatory cytokines. However, the role of autophagy in the secretion of CXCL16 under oxidative stress has not been investigated. Herein, we initially found that autophagy was suppressed in both keratinocytes of vitiligo lesions and keratinocytes exposed to oxidative stress in vitro. Autophagy inhibition also promoted CXCL16 secretion. Furthermore, upregulated transient receptor potential cation channel subfamily M member 2 (TRPM2) functioned as an upstream oxidative stress sensor to inhibit autophagy. Moreover, TRPM2-mediated Ca2+ influx activated calpain to shear autophagy related 5 (Atg5) and Atg12-Atg5 conjugate formation was blocked to inhibit autophagy under oxidative stress. More importantly, Atg5 downregulation enhanced the binding of interferon regulatory factor 3 (IRF3) to the CXCL16 promoter region by activating Tank-binding kinase 1 (TBK1), thus promoting CXCL16 secretion. These findings suggested that TRPM2-restrained autophagy promotes CXCL16 secretion via the Atg5-TBK1-IRF3 signaling pathway under oxidative stress. Inhibition of TRPM2 may serve as a potential target for the treatment of vitiligo. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
TRPM Cation Channels , Vitiligo , Humans , Vitiligo/metabolism , Vitiligo/pathology , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , CD8-Positive T-Lymphocytes/pathology , Keratinocytes/pathology , Oxidative Stress , Autophagy , Chemokine CXCL16/metabolism
4.
J Innate Immun ; 15(1): 876-892, 2023.
Article in English | MEDLINE | ID: mdl-37989127

ABSTRACT

Psoriasis is a common inflammatory skin disease, in which epidermal keratinocytes play a vital role in its pathogenesis by acting both as the responder and as the accelerator to the cutaneous psoriatic immune response. Advanced glycation end products (AGEs) are a class of proinflammatory metabolites that are commonly accumulating in cardiometabolic disorders. Recent studies have also observed the increased level of AGEs in the serum and skin of psoriasis patients, but the role of AGEs in psoriatic inflammation has not been well investigated. In the present study, we initially detected abnormal accumulation of AGEs in epidermal keratinocytes of psoriatic lesions collected from psoriasis patients. Furthermore, AGEs promoted the proliferation of keratinocytes via upregulated Keratin 17 (K17)-mediated p27KIP1 inhibition followed by accelerated cell cycle progression. More importantly, AGEs facilitated the production of interleukin-36 alpha (IL-36α) in keratinocytes, which could enhance T helper 17 (Th17) immune response. In addition, the induction of both K17 and IL-36α by AGEs in keratinocytes was dependent on the activation of signal transducer and activator of transcription 1/3 (STAT1/3) signaling pathways. At last, the effects of AGEs on keratinocytes were mediated by the receptor for AGEs (RAGE). Taken together, these findings support that AGEs potentiate the innate immune function of keratinocytes, which contributes to the formation of psoriatic inflammation. Our study implicates AGEs as a potential pathogenic link between psoriasis and cardiometabolic comorbidities.


Subject(s)
Cardiovascular Diseases , Psoriasis , Humans , Skin/pathology , Keratinocytes , Inflammation/metabolism , Immunity , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/pharmacology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology
5.
Int J Mol Med ; 52(5)2023 11.
Article in English | MEDLINE | ID: mdl-37800616

ABSTRACT

Iron overload is a prevalent pathological factor observed among elderly individuals and those with specific hematological disorders, and is frequently associated with an elevated incidence of osteoporosis. Although arctiin (ARC) has been shown to possess antioxidant properties and the ability to mitigate bone degeneration, its mechanism of action in the treatment of iron overload­induced osteoporosis (IOOP) remains incompletely understood. To explore the potential molecular mechanisms underlying the effects of ARC, the MC3T3­E1 cell osteoblast cell line was used. Cell Counting Kit was used to assess MC3T3­E1 cell viability. Alkaline phosphatase staining and alizarin red staining were assessed for osteogenic differentiation. Calcein AM assay was used to assess intracellular iron concentration. In addition, intracellular levels of reactive oxygen species (ROS), lipid peroxides, mitochondrial ROS, apoptosis rate and mitochondrial membrane potential changes in MC3T3­E1 cells were examined using flow cytometry and corresponding fluorescent dyes. The relationship between ARC and the PI3K/Akt pathway was then explored by western blotting and immunofluorescence. In addition, the effects of ARC on IOOP was verified using an iron overload mouse model. Immunohistochemistry was performed to evaluate expression of osteogenesis­related proteins. Micro-CT and H&E were used to analyze bone microstructural parameters and histomorphometric indices in the bone tissue. Notably, ARC treatment reversed the decreased viability and increased apoptosis in MC3T3­E1 cells originally induced by ferric ammonium citrate, whilst promoting the formation of mineralized bone nodules in MC3T3­E1 cells. Furthermore, iron overload induced a decrease in the mitochondrial membrane potential, augmented lipid peroxidation and increased the accumulation of ROS in MC3T3­E1 cells. ARC not only positively regulated the anti­apoptotic and osteogenic capabilities of these cells via modulation of the PI3K/Akt pathway, but also exhibited antioxidant properties by reducing oxidative stress. In vivo experiments confirmed that ARC improved bone microarchitecture and biochemical parameters in a mouse model of iron overload. In conclusion, ARC exhibits potential as a therapeutic agent for IOOP by modulating the PI3K/Akt pathway, and via its anti­apoptotic, antioxidant and osteogenic properties.


Subject(s)
Iron Overload , Osteoporosis , Humans , Mice , Animals , Aged , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Osteogenesis , Iron Overload/complications , Iron Overload/drug therapy , Iron Overload/metabolism , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoblasts/metabolism
6.
Heliyon ; 9(9): e19812, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809453

ABSTRACT

Tenghuang Jiangu Capsule (THJGC) is a Chinese herbal formula used for the treatment of osteoporosis and osteoarthritis in China, but its mechanism for treating osteoporosis is not clear. The aim of this study was to investigate the therapeutic effect of THJGC on osteoporosis and its intrinsic mechanism through network pharmacology and experimental validation. Drugs and potential targets were obtained from several reliable databases through network pharmacology, and these targets were integrated and analyzed using bioinformatics and molecular docking strategies. Quercetin, lignans and kaempferol were identified as key components, and the key targets included Akt1, MAPKs, and CASP3. Subsequently, UPLC-MS/MS analysis confirmed the presence of components in THJGC for the treatment of osteoporosis. In addition, using ex vivo and in vivo models, it was confirmed that THJGC inhibited H2O2-induced ROS generation and apoptosis, and reduced OVX-induced bone loss in a mouse model of osteoporosis. Our data suggest that THJGC has antioxidant, bone formation-promoting, bone resorption-inhibiting, and MC3T3-E1 apoptosis-reducing effects, and thus has anti-osteoporotic properties. In conclusion, it may be a promising pharmacologic adjuvant treatment for osteoporosis.

7.
Exp Dermatol ; 32(10): 1805-1814, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37584091

ABSTRACT

The risk of diabetes mellitus (DM) in vitiligo patients is higher than that in non-vitiligo population. Our goal was to explore the influencing factors for DM in vitiligo patients. A matched-pair design of 107 cases with DM and 428 controls without DM was conducted among vitiligo patients in Xijing hospital from January 2010 to October 2021. The baseline characteristics of patients were analysed based on standard descriptive statistics. The vitiligo-associated characteristics were analysed by logistic regression to identify influencing factors of DM. Interaction analysis was performed to explore the additive interactions between vitiligo-associated characteristics and baseline characteristics. After adjustment for the baseline characteristics, the severity of vitiligo [odds ratio (OR) = 2.47, 95% confidence interval (CI): 1.47-4.14] and onset age of vitiligo (OR = 0.98, 95% CI: 0.97-0.99) had a significant correlation with occurrence of DM. The severity of vitiligo had additive interaction with family history of diabetes [relative excess risk due to interaction (RERI) = 132.51 (95% CI: 5.51-1100.20), attributable proportion (AP) = 0.91 (95% CI: 0.17-0.95), synergy index (S) = 11.53 (95% CI: 1.32-100.5)] and with smoking history [RERI = 6.54 (95% CI: 0.67-19.83), AP = 0.64 (95% CI: 0.04-0.80), S = 3.48 (95% CI: 1.17-10.36)]. Earlier onset age of vitiligo and greater BSA involvement might be two independent risk factors for DM in vitiligo patients. Interaction assessment identified the severity of vitiligo as additive interaction factors with diabetes family history and with smoking history for the DM occurrence.

8.
J Transl Med ; 21(1): 434, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37403086

ABSTRACT

BACKGROUND: The activation of CD8+ T cells and their trafficking to the skin through JAK-STAT signaling play a central role in the development of vitiligo. Thus, targeting this key disease pathway with innovative drugs is an effective strategy for treating vitiligo. Natural products isolated from medicinal herbs are a useful source of novel therapeutics. Demethylzeylasteral (T-96), extracted from Tripterygium wilfordii Hook F, possesses immunosuppressive and anti-inflammatory properties. METHODS: The efficacy of T-96 was tested in our mouse model of vitiligo, and the numbers of CD8+ T cells infiltration and melanocytes remaining in the epidermis were quantified using whole-mount tail staining. Immune regulation of T-96 in CD8+ T cells was evaluated using flow cytometry. Pull-down assay, mass spectrum analysis, molecular docking, knockdown and overexpression approaches were utilized to identify the target proteins of T-96 in CD8+ T cells and keratinocytes. RESULTS: Here, we found that T-96 reduced CD8+ T cell infiltration in the epidermis using whole-mount tail staining and alleviated the extent of depigmentation to a comparable degree of tofacitinib (Tofa) in our vitiligo mouse model. In vitro, T-96 decreased the proliferation, CD69 membrane expression, and IFN-γ, granzyme B, (GzmB), and perforin (PRF) levels in CD8+ T cells isolated from patients with vitiligo. Pull-down assays combined with mass spectrum analysis and molecular docking showed that T-96 interacted with JAK3 in CD8+ T cell lysates. Furthermore, T-96 reduced JAK3 and STAT5 phosphorylation following IL-2 treatment. T-96 could not further reduce IFN-γ, GzmB and PRF expression following JAK3 knockdown or inhibit increased immune effectors expression upon JAK3 overexpression. Additionally, T-96 interacted with JAK2 in IFN-γ-stimulated keratinocytes, inhibiting the activation of JAK2, decreasing the total and phosphorylated protein levels of STAT1, and reducing the production and secretion of CXCL9 and CXCL10. T-96 did not significantly inhibit STAT1 and CXCL9/10 expression following JAK2 knockdown, nor did it suppress upregulated STAT1-CXCL9/10 signaling upon JAK2 overexpression. Finally, T-96 reduced the membrane expression of CXCR3, and the culture supernatants pretreated with T-96 under IFN-γ stressed keratinocytes markedly blocked the migration of CXCR3+CD8+ T cells, similarly to Tofa in vitro. CONCLUSION: Our findings demonstrated that T-96 might have positive therapeutic responses to vitiligo by pharmacologically inhibiting the effector functions and skin trafficking of CD8+ T cells through JAK-STAT signaling.


Subject(s)
Vitiligo , Animals , Mice , Vitiligo/drug therapy , Vitiligo/metabolism , CD8-Positive T-Lymphocytes , Molecular Docking Simulation , Skin/metabolism
9.
Heliyon ; 9(3): e13877, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36895345

ABSTRACT

Myocardial ischemia is a predominant cardiovascular disorder that can result in a series of life-threatening cardiovascular diseases. Carthami flos (CF), the flower of Carthamus tinctorius L., is a commonly used herbal medicine in Chinese medicine for treating coronary atherosclerotic heart diseases based on its anti-myocardial ischemia (MI) effects. This paper aimed to investigate the active substances and mechanisms of the anti-MI effects of CF by network pharmacology and in vitro experiments. The results indicated that 9 constituents showed high degree of association with multiple targets of MI, including quercetin, kaempferol, ß-sitosterol, luteolin, baicalein, safflomin A, safflomin C, safflower-yellow-B and hydroxysafflor yellow A. In addition, AKT1, EGFR, CASP3, MYC, JUN, ALB, CTNNB1, VEGFA, ESR1, and IL1B were screened as the leading targets with a degree number ≥50. Bioinformatic annotation of GO-MF and KEGG showed that the anti-MI effects of CF are related to apoptosis and response to antioxidative stress pathways. The in vitro results showed that CF reduced LDH and CK levels, alleviated cell cycle arrest, and decreased ROS levels in H2O2-treated H9c2 cells. In addition, CF also promoted the nuclear shift of Nrf2 and the mRNA expressions of Akt, Nrf2 and Bcl-2 but decreased the expression of caspase-3 in H2O2-treated H9c2 cells. Collectively, the anti-MI effects of CF involve inhibiting apoptosis and antioxidative stress in cardiomyoblasts by regulating Akt/Nrf2/Caspase-3/Bcl-2, and the possible active substances of CF are quercetin, kaempferol, ß-sitosterol, luteolin, baicalein, safflomin C, safflower-yellow-B, and hydroxysafflor yellow A. The results of this study will be helpful for further drug development of CF and its active monomers.

10.
J Pathol ; 260(1): 84-96, 2023 05.
Article in English | MEDLINE | ID: mdl-36852981

ABSTRACT

In vitiligo, autoreactive CD8+ T cells have been established as the main culprit considering its pathogenic role in mediating epidermal melanocyte-specific destruction. Macrophage migration inhibitory factor (MIF) is a pleiotropic molecule that plays a central role in various immune processes including the activation and proliferation of T cells; but whether MIF is intertwined in vitiligo development and progression and its involvement in aberrantly activated CD8+ T cells remains ill-defined. In this study, we found that MIF was overabundant in vitiligo patients and a mouse model for human vitiligo. Additionally, inhibiting MIF ameliorated the disease progression in vitiligo mice, which manifested as less infiltration of CD8+ T cells and more retention of epidermal melanocytes in the tail skin. More importantly, in vitro experiments indicated that MIF-inhibition suppressed the activation and proliferation of CD8+ T cells from the lymph nodes of vitiligo mice, and the effect extended to CD8+ T cells in peripheral blood mononuclear cells of vitiligo patients. Finally, CD8+ T cells derived from MIF-inhibited vitiligo mice also exhibited an impaired capacity for activation and proliferation. Taken together, our results show that MIF might be clinically targetable in vitiligo treatment, and its inhibition might ameliorate vitiligo progression by suppressing autoreactive CD8+ T cell activation and proliferation. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Macrophage Migration-Inhibitory Factors , Vitiligo , Humans , Mice , Animals , Vitiligo/drug therapy , Vitiligo/pathology , CD8-Positive T-Lymphocytes , Leukocytes, Mononuclear/pathology , Melanocytes/pathology , Cell Proliferation , Intramolecular Oxidoreductases
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981716

ABSTRACT

OBJECTIVE@#To evaluate the early clinical efficacy of robot-assisted percutaneous short-segment bone cement-augmented pedicle screw fixation in the treatment of stageⅡ-Ⅲ Kümmell disease.@*METHODS@#The clinical data of 20 patients with stageⅡ-Ⅲ Kümmell's disease who underwent robot-assisted percutaneous bone cement-augmented pedicle screw fixation between June 2017 and January 2021 were retrospectively analyzed. There were 4 males and 16 females, aged from 60 to 81 years old with an average age of (69.1±8.3) years. There were 9 cases of stageⅡand 11 cases of stage Ⅲ, all of which were single vertebral lesions, including 3 cases of T11, 5 cases of T12, 8 cases of L1, 3 cases of L2, and 1 case of L3. These patients did not exhibit symptoms of spinal cord injury. The operation time, intraoperative blood loss, and complications were recorded. The position of pedicle screws and the filling and leakage of bone cement in gaps were observed using postoperative CT 2D reconstruction. The data of the visual analogue scale (VAS), Oswestry disability index (ODI), kyphosis Cobb angle, wedge angle of the diseased vertebra, and anterior and posterior vertebral height on lateral radiographs were statistically analyzed preoperatively, 1 week postoperatively, and at the final follow-up.@*RESULTS@#Twenty patients were followed up for 10 to 26 months, with an average follow-up of (16.0±5.1) months. All operations were successfully completed. The surgical duration ranged from 98 to 160 minutes, with an average of (122±24) minutes. The intraoperative blood loss ranged from 25 to 95 ml, with an average of (45±20) ml. There were no intraoperative vascular nerve injuries. A total of 120 screws were inserted in this group, including 111 screws at grade A and 9 screws at grade B according to the Gertzbein and Robbins scales. Postoperative CT indicated that the bone cement was well-filled in the diseased vertebra, and cement leakage occurred in 4 cases. Preoperative VAS and ODI were (6.05±0.18) points and (71.10±5.37)%, respectively, (2.05±0.14) points and (18.57±2.77)% at 1 week after operation, and (1.35±0.11) points and (15.71±2.12) % at final follow-up. There were significant differences between postoperative 1 week and preoperative, and between final follow-up and postoperative 1 week(P<0.01). Anterior and posterior vertebral height, kyphosis Cobb angle, and wedge angle of the diseased vertebra were(45.07±1.06)%, (82.02±2.11)%, (19.49±0.77) °, and (17.56±0.94) ° preoperatively, respectively, (77.00±0.99)%, (83.04±2.02)%, (7.34±0.56) °, and (6.15±0.52) ° at 1 week postoperatively, and (75.13±0.86)%, (82.39±0.45)%, (8.38±0.63) °, and (7.09±0.59) ° at the final follow-up.@*CONCLUSION@#Robot-assisted percutaneous short-segment bone cement-augmented pedicle screw fixation demonstrates satisfactory short-term efficacy in treating stageⅡ-Ⅲ Kümmell's disease as an effective minimally invasive alternative. However, longer operation times and strict patient selection criteria are necessary, and long-term follow-up is required to determine its lasting effectiveness.


Subject(s)
Male , Female , Humans , Middle Aged , Aged , Aged, 80 and over , Pedicle Screws , Bone Cements , Robotics , Blood Loss, Surgical , Retrospective Studies , Spinal Fractures/surgery , Lumbar Vertebrae/injuries , Treatment Outcome , Kyphosis , Thoracic Vertebrae/injuries , Fracture Fixation, Internal
12.
PeerJ ; 10: e13862, 2022.
Article in English | MEDLINE | ID: mdl-36217382

ABSTRACT

Background: A variety of proteins including epigenetic factors are involved in the differentiation of human bone marrow mesenchymal stem cells. These cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment. Further in-depth study of their epigenetic alterations may make sense. Methods: Chromatin Immunoprecipitation-PCR (ChIP-PCR) was used to detect the methylation enrichment status of H3K9me2 in the Runx2 promoter, alizarin red and alkaline phosphatase (ALP) staining were used to detect osteogenic differentiation and mineralization ability, western blot and quantitative RT-PCR were used to measure the differential expression of osteogenesis-related proteins and genes. Recombinant Lentivirus mediated gain-of-function and loss-of-function study. The scale of epigenetic modification was detected by laser confocal. Results: Our results showed that compared with human bone marrow mesenchymal stem cells (hBMSCs) without osteogenic differentiation treatment, hBMSCs after osteogenic differentiation significantly promoted osteogenic differentiation and mRNA expression such as JMJD2B/KDM4B, osteogenesis-related genes like Runx2 and FAM210A in hBMSCs cells, suggesting that upregulation of JMJD2B/KDM4B is involved in the promoting effect of osteogenesis. After overexpression and silencing expression of JMJD2B, we found a completely opposite and significant difference in mRNA expression of osteogenesis-related genes and staining in hBMSCs. Overexpression of JMJD2B/KDM4B significantly promoted osteogenic differentiation, suggesting that JMJD2B/KDM4B could promote osteogenesis. In addition, ChIP-PCR showed that overexpression of JMJD2B/KDM4B significantly reversed the methylation enrichment status of H3K9me2 in Runx2 promoter. Furthermore, overexpression of JMJD2B/KDM4B significantly reverses the inhibitory effect of BIX01294 on H3K9me2, suggesting that JMJD2B/KDM4B regulates the osteogenic differentiation of hBMSCs by changing the methylation status of H3K9me2 at the Runx2 promoter. Conclusions: Taken together, these results suggest that JMJD2B/ KDM4B may induce the osteogenic differentiation of hBMSCs by regulating the methylation level of H3K9me2 at the Runx2 promoter.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Jumonji Domain-Containing Histone Demethylases , Mesenchymal Stem Cells , Osteogenesis , Humans , Bone Marrow/metabolism , Cell Differentiation/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Histones/genetics , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , RNA, Messenger/metabolism
13.
Article in English | MEDLINE | ID: mdl-36193152

ABSTRACT

Background: This study aimed to investigate the molecular mechanism of Tongfengding capsule (TFDC) in treating immune-inflammatory diseases of gouty arthritis (GA) and interleukin-1-beta (IL-1ß) inhibitors by using network pharmacology, molecular docking, and cell experiments. Methods: In this study, the compounds of TFDC and the potential inflammatory targets of GA were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Online Mendelian Inheritance in Man (OMIM), and GeneCards databases. The TFDC-GA-potential targets interaction network was accomplished by the STRING database. The TFDC-active compound-potential target-GA network was constructed using Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to further explore the GA mechanism and therapeutic effects of TFDC. Quantitative real-time PCR (qPCR) was used to verify whether the TFDC inhibited IL-1ß in GA. Molecular docking technology was used to analyze the optimal effective compounds from the TFDC for docking with IL-1ß. Result: 133 active compounds and 242 targets were screened from the TFDC, and 25 of the targets intersected with GA inflammatory targets, which were considered as potential therapeutic targets. Network pharmacological analysis showed that the TFDC active compounds such as quercetin, stigmasterol, betavulgarin, rutaecarpine, naringenin, dihydrochelerythrine, and dihydrosanguinarine had better correlation with GA inflammatory targets such as PTGS2, PTGS1, NOS2, SLC6A3, HTR3A, PPARG, MAPK14, RELA, MMP9, and MMP2. The immune-inflammatory signaling pathways of the active compounds for treating GA are IL-17 signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, HIF-1 signaling pathway, etc. The TFDC reduced IL-1ß mRNA expression in GA by qPCR. Molecular docking results suggested that rutaecarpine was the most appropriate natural IL-1ß inhibitor. Conclusion: Our findings provide an essential role and bases for further immune-inflammatory studies on the molecular mechanisms of TFDC and IL-1ß inhibitors development in GA.

14.
J Dtsch Dermatol Ges ; 20(5): 629-641, 2022 05.
Article in English | MEDLINE | ID: mdl-35499212

ABSTRACT

BACKGROUND AND OBJECTIVES: This study aimed to investigate the association of vitiligo with metabolic syndrome (MetS) and its relevant components. MATERIAL AND METHODS: We searched PubMed, Web of Science, Cochrane Library and Embase databases from inception to March 30, 2021, for relevant studies. Cross-sectional and case-control studies that reported either the prevalence or odds ratio [OR] of MetS or its components in vitiligo patients were included. Data were pooled using either random-effects model or fixed-effects model according to the heterogeneity. RESULTS: Thirty studies with a total of 28,325 vitiligo patients were included. Significant associations were found between vitiligo and diabetes mellitus (pooled OR, 3.30; 95 % confidence interval [CI], 2.10-5.17) and between vitiligo and obesity (pooled OR, 2.08; 95 % CI, 1.40-3.11). The overall prevalence of hypertension in the patients with vitiligo was 19.0 % (95 % CI, 2.0 %-36.0 %). CONCLUSIONS: Our findings suggest the association of vitiligo with diabetes mellitus, obesity, and hypertension. It is recommended for dermatologists to take these associations into account so as to identify potential comorbidities promptly in vitiligo patients. Additionally, vitiligo patients are advised to monitor the indexes including BMI, blood glucose, and blood pressure levels and the consultation with specialists is necessary upon abnormal changes of these indexes.


Subject(s)
Diabetes Mellitus , Hypertension , Metabolic Syndrome , Vitiligo , Cross-Sectional Studies , Humans , Metabolic Syndrome/epidemiology , Obesity/epidemiology , Vitiligo/epidemiology
15.
J Dtsch Dermatol Ges ; 20(5): 629-642, 2022 05.
Article in English | MEDLINE | ID: mdl-35578427

ABSTRACT

HINTERGRUND UND ZIELE: Ziel dieser Studie war die Untersuchung des Zusammenhangs zwischen Vitiligo und dem metabolischen Syndrom (MetS) sowie dessen relevanten Komponenten. MATERIAL UND METHODEN: Die Datenbanken PubMed, Web of Science, Cochrane Library und Embase wurden von deren Beginn bis zum 30. März 2021 nach relevanten Studien durchsucht. Querschnitts- und Fall-Kontroll-Studien, die entweder die Prävalenz oder die Odds-Ratio [OR] des MetS oder seiner Komponenten bei Vitiligo-Patienten berichteten, wurden eingeschlossen. Die Daten wurden entsprechend der Heterogenität entweder mit einem Zufallseffektmodell oder einem Modell mit festen Effekten gepoolt. ERGEBNISSE: Es wurden 30 Studien mit insgesamt 28.325 Vitiligo-Patienten eingeschlossen. Signifikante Zusammenhänge wurden zwischen Vitiligo und Diabetes mellitus (gepoolte OR, 3,30; 95 %-Konfidenzintervall [KI], 2,10-5,17) sowie zwischen Vitiligo und Adipositas (gepoolte OR, 2,08; 95 %-KI, 1,40-3,11) ermittelt. Die Gesamtprävalenz der Hypertonie bei Patienten mit Vitiligo betrug 19,0 % (95 %-KI, 2,0 %-36,0 %). SCHLUSSFOLGERUNGEN: Unserer Ergebnisse lassen auf einen Zusammenhang zwischen Vitiligo und Diabetes mellitus sowie Hypertonie schließen. Dermatologen wird empfohlen diese Zusammenhänge zu berücksichtigen, um potenzielle Begleiterkrankungen bei Vitiligo-Patienten zeitnah zu identifizieren. Zudem wird Vitiligo-Patienten empfohlen, Parameter wie BMI, Blutzuckerspiegel und Blutdruck zu überwachen und bei auffälligen Veränderungen dieser Parameter unverzüglich einen Spezialisten zu konsultieren.

16.
Cell Death Discov ; 8(1): 70, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177586

ABSTRACT

Vitiligo is a cutaneous depigmenting autoimmune disease caused by the extensive destruction of epidermal melanocytes. Convincing data has defined a critical role for oxidative stress in the pathogenesis of vitiligo. Oxeiptosis is a caspase-independent cell death modality that was reportedly triggered by oxidative stress and operative in pathogen clearance. However, whether oxeiptosis exists in oxidative stress-induced melanocytes demise in vitiligo remains undetermined. In the present study, we initially found that other cell death modalities might exist in addition to the well-recognized apoptosis and necroptosis in H2O2-treated melanocytes. Furthermore, AIFM1 was found to be dephosphorylated at Ser116 in oxidative stress-induced melanocytes death, which was specific to oxeiptosis. Moreover, KEAP1 and PGAM5, upstream of the AIFM1 in oxeiptosis, were found to operate in melanocytic death. Subsequently, the KEAP1-PGAM5-AIFM1 signaling pathway was proved to be involved in oxidative stress-triggered melanocytes demise through the depletion of KEAP1 and PGAM5. Altogether, our study indicated that oxeiptosis might occur in melanocytes death under oxidative stress and contribute to the pathogenesis of vitiligo.

17.
J Invest Dermatol ; 142(6): 1659-1669.e4, 2022 06.
Article in English | MEDLINE | ID: mdl-34780715

ABSTRACT

Autophagy plays a protective role in oxidative stress‒induced melanocyte death. Dysregulated autophagy increases the sensitivity of melanocytes in response to oxidative damage and promotes melanocyte degeneration in vitiligo. However, the molecular mechanism underlying this process is not fully understood. In this study, using RNA-sequencing technology, we compared the transcriptome change between normal and vitiligo melanocytes with or without treatment of oxidative stress. We found that ATG5 and ATG12, the critical components for autophagosome formation, were significantly reduced in vitiligo melanocytes under oxidative stress. Mechanistically, HSF1 is the prime transcription factor for both ATG5 and ATG12, accounting for the reduced level of ATG5 and ATG12 in vitiligo melanocytes. Deficiency of HSF1 led to accumulation of intracellular ROS, imbalance of mitochondrion membrane potential, and apoptosis in melanocytes exposure to oxidative stress. Furthermore, overexpression of HSF1 could ameliorate oxidative stress‒induced melanocytes death through the activation of autophagy by upregulating ATG5 and ATG12. These findings suggested that targeting HSF1-ATG5/12 axis could prevent oxidative stress‒induced melanocyte death and may be used as a therapeutic strategy for vitiligo treatment.


Subject(s)
Hypopigmentation , Vitiligo , Autophagy , Humans , Melanocytes , Oxidative Stress
18.
Oxid Med Cell Longev ; 2021: 1608586, 2021.
Article in English | MEDLINE | ID: mdl-34917229

ABSTRACT

Vitiligo is a cutaneous depigmentation disease due to loss of epidermal melanocytes. Accumulating evidence has indicated that oxidative stress plays a vital role in vitiligo via directly destructing melanocytes and triggering inflammatory response that ultimately undermines melanocytes. Folic acid (FA), an oxidized form of folate with high bioavailability, exhibits potent antioxidant properties and shows therapeutic potential in multiple oxidative stress-related diseases. However, whether FA safeguards melanocytes from oxidative damages remains unknown. In this study, we first found that FA relieved melanocytes from H2O2-induced abnormal growth and apoptosis. Furthermore, FA enhanced the activity of antioxidative enzymes and remarkably reduced intracellular ROS levels in melanocytes. Subsequently, FA effectively activated nuclear factor E2-related factor 2 (Nrf2) pathway, and Nrf2 knockdown blocked the protective effects of FA on H2O2-treated melanocytes. Additionally, FA inhibited the production of proinflammatory HMGB1 in melanocytes under oxidative stress. Taken together, our findings support the protective effects of FA on human melanocytes against oxidative injury via the activation of Nrf2 and the inhibition of HMGB1, thus indicating FA as a potential therapeutic agent for the treatment of vitiligo.


Subject(s)
Folic Acid/pharmacology , Gene Expression Regulation/drug effects , HMGB1 Protein/metabolism , Melanocytes/drug effects , NF-E2-Related Factor 2/antagonists & inhibitors , Oxidative Stress , Protective Agents/pharmacology , Antioxidants/pharmacology , Apoptosis , HMGB1 Protein/genetics , Humans , Melanocytes/metabolism , Melanocytes/pathology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Vitamin B Complex/pharmacology
19.
PeerJ ; 9: e12380, 2021.
Article in English | MEDLINE | ID: mdl-34966572

ABSTRACT

BACKGROUND: Core fucosylation catalyzed by FUT8 is essential for TGF-ß binding to TGF-ß receptors. METHODS: Indirect TGF-ß1 binding assay was used to evaluate the ability of TGF-ß1 to bind to TGFBRs, Alizarin red and alkaline phosphatase staining were used to detect osteogenic differentiation and mineralization ability , western blot and quantitative RT-PCR were used to measure the differential expression of osteogenesis-related proteins and genes. Plasmid-mediated gain-of-function study. The scale of core fucosylation modification was detected by Lectin-blot and LCA laser confocal. RESULTS: Our results showed that compared with vehicle treatment, high-dose (10-6 and 10-5 M) dexamethasone significantly inhibited cell proliferation, osteogenic differentiation, and FUT8 mRNA expression while promoting mRNA expression of adipogenesis-related genes in MC3T3-E1 cells, suggesting that downregulation of FUT8 is involved in the inhibitory effect of high-dose dexamethasone on osteogenesis. Overexpression of FUT8 significantly promoted osteogenic differentiation and activated TGF-ß/Smad signaling in MC3T3-E1 cells in the presence of high-dose dexamethasone, suggesting that FUT8 reverses the inhibitory effect of high-dose dexamethasone on osteogenesis. In addition, lectin fluorescent staining and blotting showed that overexpression of FUT8 significantly reversed the inhibitory effects of high-dose dexamethasone on core fucosylation of TGFBR1 and TGFBR2. Furthermore, indirect TGF-ß1 binding assay showed that overexpression of FUT8 remarkably promoted TGF-ß1 binding to TGFBRs in MC3T3-E1 cells in the presence of high-dose dexamethasone. CONCLUSIONS: Taken together, these results suggest that overexpression of FUT8 facilitates counteracting the inhibitory effect of dexamethasone on TGF-ß signaling and osteogenesis.

20.
Biomed Res Int ; 2021: 5538643, 2021.
Article in English | MEDLINE | ID: mdl-34557547

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is a refractory immune disease, which is often complicated with osteonecrosis of the femoral head (ONFH). Curcumin, the most active ingredient of Curcuma longa with a variety of biological activities, has wide effects on the body system. The study is aimed at exploring the potential therapeutic targets underlying the effect of curcumin on SLE-ONFH by utilizing a network pharmacology approach and molecular docking strategy. METHODS: Curcumin and its drug targets were identified using network analysis. First, the Swiss target prediction, GeneCards, and OMIM databases were mined for information relevant to the prediction of curcumin targets and SLE-ONFH-related targets. Second, the curcumin target gene, SLE-ONFH shared gene, and curcumin-SLE-ONFH target gene networks were created in Cytoscape software followed by collecting the candidate targets of each component by R software. Third, the targets and enriched pathways were examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Eventually, a gene-pathway network was constructed and visualized by Cytoscape software; key potential central targets were verified and checked by molecular docking and literature review. RESULTS: 201 potential targets of curcumin and 170 related targets involved in SLE-ONFH were subjected to network analysis, and the 36 intersection targets indicated the potential targets of curcumin for the treatment of SLE-ONFH. Additionally, for getting more comprehensive and accurate candidate genes, the 36 potential targets were determined to be analyzed by network topology and 285 candidate genes were obtained finally. The top 20 biological processes, cellular components, and molecular functions were identified, when corrected by a P value ≤ 0.05. 20 related signaling pathways were identified by KEGG analysis, when corrected according to a Bonferroni P value ≤ 0.05. Molecular docking showed that the top three genes (TP53, IL6, VEGFA) have good binding force with curcumin; combined with literature review, some other genes such as TNF, CCND1, CASP3, and MMP9 were also identified. CONCLUSION: The present study explored the potential targets and signaling pathways of curcumin against SLE-ONFH, which could provide a better understanding of its effects in terms of regulating cell cycle, angiogenesis, immunosuppression, inflammation, and bone destruction.


Subject(s)
Curcumin/therapeutic use , Femur Head Necrosis/complications , Femur Head Necrosis/drug therapy , Lupus Erythematosus, Systemic/complications , Molecular Docking Simulation , Network Pharmacology , Curcumin/chemistry , Curcumin/pharmacology , Gene Ontology , Gene Regulatory Networks , Humans , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...