Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Gels ; 10(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38391482

ABSTRACT

Immediate burn wound care is a critical factor influencing the outcomes of burn treatment. In this study, we developed a spray-type alginate hydrogel dressing that promotes wound healing, reduces pain, and increases the convenience of use in a burn treatment emergency. We investigated the efficiency of newly developed spray-type alginate hydrogel dressing on the wound healing process. We investigated the efficacy of the alginate hydrogel dressing for wound healing in 30 Sprague Dawley rats. Four deep, round second-degree burn wounds (diameter, 1.5 cm) were created bilaterally on the dorsum of the rat's trunk; the rats were divided into four groups, in which different dressing materials were applied as follows: group A, gauze (control); group B, Mepilex™ (control); group C, 2.25% alginate hydrogel; and group D, 2.5% alginate hydrogel. The gross findings of each group were compared by tracing the remaining wound and performing visual and histological observations and biochemical analysis for proteins associated with wound healing at each time period. In burn wounds, groups C and D showed significantly higher contraction, epithelialization, and healing rates. Histologically, groups C and D showed an improved arrangement of collagen fibers and a thick epithelial layer 14 days after initial wound formation. Group C showed higher CD31, TGF-ß, and fibronectin expression in Western blot analyses after day 14. This study suggests that the spray-type alginate hydrogel dressing is an effective material for initial burn wound care.

2.
Neurotherapeutics ; 20(3): 803-821, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36508119

ABSTRACT

Reactive glial cells are hallmarks of brain injury. However, whether these cells contribute to secondary inflammatory pathology and neurological deficits remains poorly understood. Lipocalin-2 (LCN2) has inflammatory and neurotoxic effects in various disease models; however, its pathogenic role in traumatic brain injury remains unknown. The aim of the present study was to investigate the expression of LCN2 and its role in neuroinflammation following brain injury. LCN2 expression was high in the mouse brain after controlled cortical impact (CCI) and photothrombotic stroke (PTS) injury. Brain levels of LCN2 mRNA and protein were also significantly higher in patients with chronic traumatic encephalopathy (CTE) than in normal subjects. RT-PCR and immunofluorescence analyses revealed that astrocytes were the major cellular source of LCN2 in the injured brain. Lcn2 deficiency or intracisternal injection of an LCN2 neutralizing antibody reduced CCI- and PTS-induced brain lesions, behavioral deficits, and neuroinflammation. Mechanistically, in cultured glial cells, recombinant LCN2 protein enhanced scratch injury-induced proinflammatory cytokine gene expression and inhibited Gdnf gene expression, whereas Lcn2 deficiency exerted opposite effects. Together, our results from CTE patients, rodent brain injury models, and cultured glial cells suggest that LCN2 mediates secondary damage response to traumatic and ischemic brain injury by promoting neuroinflammation and suppressing the expression of neurotropic factors.


Subject(s)
Brain Injuries , Stroke , Animals , Mice , Astrocytes/metabolism , Brain Injuries/pathology , Lipocalin-2/genetics , Lipocalin-2/metabolism , Mice, Inbred C57BL , Neuroglia/metabolism , Neuroinflammatory Diseases , Stroke/metabolism , Humans
3.
Aging Cell ; 20(3): e13332, 2021 03.
Article in English | MEDLINE | ID: mdl-33709472

ABSTRACT

We previously demonstrated that ibrutinib modulates LPS-induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer's disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aß plaque levels by promoting the non-amyloidogenic pathway of APP cleavage, decreased Aß-induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin-dependent kinase-5 (p-CDK5). Importantly, tau-mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long-term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short- and long-term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3-kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD-associated pathology and cognitive function and may be a potential therapy for AD.


Subject(s)
Adenine/analogs & derivatives , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognition , Inflammation/pathology , Piperidines/pharmacology , tau Proteins/metabolism , Adenine/pharmacology , Animals , Brain/drug effects , Brain/physiopathology , Cognition/drug effects , Cyclin-Dependent Kinase 5/metabolism , Cytokines/metabolism , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Gliosis/complications , Inflammation Mediators/metabolism , Memory, Long-Term/drug effects , Mice, Transgenic , Neurogenesis/drug effects , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Phosphorylation/drug effects , Plaque, Amyloid/pathology
4.
Free Radic Biol Med ; 160: 575-595, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32896600

ABSTRACT

Regulating amyloid beta (Aß) pathology and neuroinflammatory responses holds promise for the treatment of Alzheimer's disease (AD) and other neurodegenerative and/or neuroinflammation-related diseases. In this study, the effects of KVN93, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), on cognitive function and Aß plaque levels and the underlying mechanism of action were evaluated in 5x FAD mice (a mouse model of AD). KVN93 treatment significantly improved long-term memory by enhancing dendritic synaptic function. In addition, KVN93 significantly reduced Aß plaque levels in 5x FAD mice by regulating levels of the Aß degradation enzymes neprilysin (NEP) and insulin-degrading enzyme (IDE). Moreover, Aß-induced microglial and astrocyte activation were significantly suppressed in the KVN-treated 5xFAD mice. KVN93 altered neuroinflammation induced by LPS in microglial cells but not primary astrocytes by regulating TLR4/AKT/STAT3 signaling, and in wild-type mice injected with LPS, KVN93 treatment reduced microglial and astrocyte activation. Overall, these results suggest that the novel DYRK1A inhibitor KVN93 is a potential therapeutic drug for regulating cognitive/synaptic function, Aß plaque load, and neuroinflammatory responses in the brain.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Animals , Cognition , Disease Models, Animal , Mice , Mice, Transgenic , Microglia , Plaque, Amyloid/drug therapy , Dyrk Kinases
5.
Cells ; 9(7)2020 07 09.
Article in English | MEDLINE | ID: mdl-32660121

ABSTRACT

The oral multi-target kinase inhibitor regorafenib, which targets the oncogenic receptor tyrosine kinase (RTK), is an effective therapeutic for patients with advanced gastrointestinal stromal tumors or metastatic colorectal cancer. However, whether regorafenib treatment has beneficial effects on neuroinflammation and Alzheimer's disease (AD) pathology has not been carefully addressed. Here, we report the regulatory function of regorafenib in neuroinflammatory responses and AD-related pathology in vitro and in vivo. Regorafenib affected AKT signaling to attenuate lipopolysaccharide (LPS)-mediated expression of proinflammatory cytokines in BV2 microglial cells and primary cultured microglia and astrocytes. In addition, regorafenib suppressed LPS-induced neuroinflammatory responses in LPS-injected wild-type mice. In 5x FAD mice (a mouse model of AD), regorafenib ameliorated AD pathology, as evidenced by increased dendritic spine density and decreased Aß plaque levels, by modulating APP processing and APP processing-associated proteins. Furthermore, regorafenib-injected 5x FAD mice displayed significantly reduced tau phosphorylation at T212 and S214 (AT100) due to the downregulation of glycogen synthase kinase-3 beta (GSK3ß) activity. Taken together, our results indicate that regorafenib has beneficial effects on neuroinflammation, AD pathology, and dendritic spine formation in vitro and in vivo.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Inflammatory Agents/pharmacology , Dendritic Spines/drug effects , Neuroprotective Agents/pharmacology , Phenylurea Compounds/pharmacology , Pyridines/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Cell Line , Cells, Cultured , Dendritic Spines/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuronal Outgrowth , Neuroprotective Agents/therapeutic use , Phenylurea Compounds/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Pyridines/therapeutic use , Signal Transduction , tau Proteins/metabolism
6.
J Neuroinflammation ; 16(1): 190, 2019 Oct 26.
Article in English | MEDLINE | ID: mdl-31655606

ABSTRACT

BACKGROUND: The FDA-approved small-molecule drug dasatinib is currently used as a treatment for chronic myeloid leukemia (CML). However, the effects of dasatinib on microglial and/or astrocytic neuroinflammatory responses and its mechanism of action have not been studied in detail. METHODS: BV2 microglial cells, primary astrocytes, or primary microglial cells were treated with dasatinib (100 or 250 nM) or vehicle (1% DMSO) for 30 min or 2 h followed by lipopolysaccharide (LPS; 200 ng/ml or 1 µg/ml) or PBS for 5.5 h. RT-PCR, real-time PCR; immunocytochemistry; subcellular fractionation; and immunohistochemistry were subsequently conducted to determine the effects of dasatinib on LPS-induced neuroinflammation. In addition, wild-type mice were injected with dasatinib (20 mg/kg, intraperitoneally (i.p.) daily for 4 days or 20 mg/kg, orally administered (p.o.) daily for 4 days or 2 weeks) or vehicle (4% DMSO + 30% polyethylene glycol (PEG) + 5% Tween 80), followed by injection with LPS (10 mg/kg, i.p.) or PBS. Then, immunohistochemistry was performed, and plasma IL-6, IL-1ß, and TNF-α levels were analyzed by ELISA. RESULTS: Dasatinib regulates LPS-induced proinflammatory cytokine and anti-inflammatory cytokine levels in BV2 microglial cells, primary microglial cells, and primary astrocytes. In BV2 microglial cells, dasatinib regulates LPS-induced proinflammatory cytokine levels by regulating TLR4/AKT and/or TLR4/ERK signaling. In addition, intraperitoneal injection and oral administration of dasatinib suppress LPS-induced microglial/astrocyte activation, proinflammatory cytokine levels (including brain and plasma levels), and neutrophil rolling in the brains of wild-type mice. CONCLUSIONS: Our results suggest that dasatinib modulates LPS-induced microglial and astrocytic activation, proinflammatory cytokine levels, and neutrophil rolling in the brain.


Subject(s)
Astrocytes/metabolism , Dasatinib/pharmacology , Lipopolysaccharides/toxicity , Microglia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , Animals , Animals, Newborn , Astrocytes/drug effects , Cells, Cultured , Dasatinib/therapeutic use , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/antagonists & inhibitors
7.
Sci Rep ; 9(1): 11490, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391512

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and repetitive/restricted behaviors. Although gene-environment interactions may explain the heterogeneous etiology of ASD, it is still largely unknown how the gene-environment interaction affects behavioral symptoms and pathophysiology in ASD. To address these questions, we used Cntnap2 knockout mice (genetic factor, G) exposed to valproic acid during embryonic development (environmental factor, E) as a gene-environment interaction (G × E) model. Paradoxically, the social deficits observed in the respective G and E models were improved in the G × E model; however, the high seizure susceptibility was more severe in the G × E -model than in the G and E models. Repetitive self-grooming and hyperactivity did not differ among the three models. The amplitudes of miniature excitatory postsynaptic currents in layer 2/3 pyramidal neurons of the medial prefrontal cortex were aberrant and similar in the G × E model when compared to the control group. Our findings suggest that the interaction of two risk factors does not always aggravate ASD symptoms but can also alleviate them, which may be key to understanding individual differences in behavioral phenotypes and symptom intensity.


Subject(s)
Autism Spectrum Disorder/physiopathology , Gene-Environment Interaction , Maternal Exposure/adverse effects , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Prefrontal Cortex/physiopathology , Valproic Acid/toxicity , Animals , Autism Spectrum Disorder/etiology , Disease Models, Animal , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Excitatory Postsynaptic Potentials/physiology , Female , Grooming/drug effects , Humans , Male , Mice , Mice, Knockout , Prefrontal Cortex/cytology , Prefrontal Cortex/drug effects , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Risk Factors , Stereotyped Behavior/drug effects
8.
Cell Biochem Funct ; 37(3): 139-147, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30883865

ABSTRACT

Lin28, which is highly expressed during embryogenesis, has been shown to play an important role in cell growth and embryonic development. Meanwhile, Lin28 represses let-7 miRNA biogenesis and block pre-let-7 processing in the cytoplasm. The let-7 family of miRNAs is known to repress oncogenesis and cell cycle progression by targeting oncogenic genes and signalling pathways. Consequently, Lin28 acts as an oncogene by upregulating let-7 targets through the repression of let-7 biogenesis. A recent genome-wide association study (GWAS) showed that many genes related to Type 2 diabetes (T2D) are also oncogenes or cell cycle regulators. The role of Lin28 in mouse growth and glucose metabolism in metabolic-related tissues has also been studied. In these studies, whole-body Lin28 overexpression was found to promote glucose utilization and prevent weight gain by inhibiting let-7 biogenesis. Furthermore, Lin28 has been found to directly stimulate skeletal myogenesis and cell growth. Therefore, we determined whether similar effects mediated by Lin28a, which is essential for cell growth and proliferation, may also apply to pancreatic ß-cells. We found that overexpression of Lin28a protects pancreatic ß-cells from streptozotocin (STZ)-induced ß-cell destruction in vitro and in vivo. Furthermore, Lin28a-overexpressing transgenic (Tg) mice had higher insulin secretion in the presence of glucose than in control mice. Our findings suggest that the Lin28/let-7 axis is an important regulator of pancreatic ß-cell functions and that precise modulation of this axis may be helpful in treating metabolic diseases such as diabetes. SIGNIFICANCE OF THE STUDY: We demonstrate that Lin28a prevents pancreatic ß-cell death against streptozotocin (STZ)-induced ß-cell destruction in vitro and in vivo. Furthermore, Lin28a promotes cell survival and proliferation by activating the PI3K-Akt signalling pathway, which may be dependent on let-7 regulation. Taken together, our results imply that the Lin28a/let-7 axis is an important regulator of pancreatic ß-cell functions and that precise modulation of this axis may be helpful in treating metabolic diseases such as diabetes.


Subject(s)
Diabetes Mellitus, Experimental/prevention & control , Insulin-Secreting Cells/drug effects , RNA-Binding Proteins/genetics , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Insulin-Secreting Cells/pathology , Male , Mice , RNA-Binding Proteins/metabolism , Streptozocin , Tumor Cells, Cultured
9.
Neuropsychopharmacology ; 44(2): 314-323, 2019 01.
Article in English | MEDLINE | ID: mdl-29899405

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, featuring social communication deficit and repetitive/restricted behaviors as common symptoms. Its prevalence has continuously increased, but, till now, there are no therapeutic approaches to relieve the core symptoms, particularly social deficit. In previous studies, abnormal function of the glutamatergic neural system has been proposed as a critical mediator and therapeutic target of ASD-associated symptoms. Here, we investigated the possible roles of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in autism symptoms using two well-known autistic animal models, Cntnap2 knockout (KO) mice and in utero valproic acid-exposed ICR (VPA) mice. We found that Cntnap2 KO mice displayed decreased glutamate receptor expression and transmission. Contrarily, VPA mice exhibited increased glutamate receptor expression and transmission. Next, we investigated whether AMPAR modulators (positive-allosteric-modulator for Cntnap2 KO mice and antagonist for VPA mice) can improve autistic symptoms by normalizing the aberrant excitatory transmission in the respective animal models. Interestingly, the AMPAR modulation specifically ameliorated social deficits in both animal models. These results indicated that AMPAR-derived excitatory neural transmission changes can affect normal social behavior. To validate this, we injected an AMPAR agonist or antagonist in control ICR mice and, interestingly, these treatments impaired only the social behavior, without affecting the repetitive and hyperactive behaviors. Collectively, these results provide insight into the role of AMPARs in the underlying pathophysiological mechanisms of ASD, and demonstrate that modulation of AMPAR can be a potential target for the treatment of social behavior deficits associated with ASD.


Subject(s)
Autism Spectrum Disorder/drug therapy , Behavior, Animal/drug effects , Excitatory Amino Acid Antagonists/therapeutic use , Receptors, AMPA/antagonists & inhibitors , Social Behavior , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/genetics , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Female , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Patch-Clamp Techniques , Play and Playthings , Pregnancy , Prenatal Exposure Delayed Effects , Receptors, N-Methyl-D-Aspartate/metabolism , Valproic Acid
10.
Sci Rep ; 8(1): 12003, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104581

ABSTRACT

Social support can relieve stress-induced behavioural outcomes, although its underlying molecular mechanisms are not fully understood. Here, we evaluated whether social interactions can prevent the restraint stress (RS)-induced cognitive impairments in male adolescent mice by utilizing molecular, cellular, and behavioural approaches. Acute RS in adolescent ICR mice impaired the working memory in the Y-maze test and memory consolidation and retrieval in the novel-object-recognition test (NORT). In addition, RS increased the extracellular signal-regulated kinases 1/2 phosphorylation (p-ERK1/2) in the prefrontal cortex (PFC) and corticosterone levels in the plasma. Interestingly, these outcomes were normalized by the presence of a conspecific animal (social support) during RS. RS also significantly upregulated the expression levels of known stress-relevant genes such as Egr1, Crh, and Crhr1, which were normalized by social support. Systemic injection of SL327 (an inhibitor of MEK1/2 that also blocks its downstream signal ERK1/2) prior to RS rescued the working memory impairments and the increased p-ERK1/2 while normalizing the expression of Egr1. Our results suggest that social support can alleviate the RS-induced cognitive impairments partly by modulating ERK1/2 phosphorylation and gene transcription in the PFC, and provide novel insights into the molecular mechanisms of the stress-buffering effects of social support.


Subject(s)
Animal Communication , Cognitive Dysfunction/prevention & control , Social Behavior , Stress, Psychological/complications , Age Factors , Aminoacetonitrile/administration & dosage , Aminoacetonitrile/analogs & derivatives , Animals , Cognitive Dysfunction/blood , Cognitive Dysfunction/etiology , Corticosterone/blood , Early Growth Response Protein 1/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , Maze Learning/physiology , Memory, Short-Term/physiology , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , Prefrontal Cortex/metabolism , Protease Inhibitors/administration & dosage , Stress, Psychological/blood , Stress, Psychological/psychology , Transcriptional Activation/drug effects , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...