Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38136298

ABSTRACT

Nexavant was reported as an alternative to the TLR3 agonist of Poly(I:C) and its derivatives. The physicochemical properties, signaling pathways, anti-cancer effects, and mechanisms of Nexavant were investigated. The distinctive characteristics of Nexavant compared to that of Poly(I:C) were demonstrated by precise quantification, enhanced thermostability, and increased resistance to RNase A. Unlike Poly(I:C), which activates TLR3, RIG-I, and MDA5, Nexavant stimulates signaling through TLR3 and RIG-I but not through MDA5. Compared to Poly(I:C), an intratumoral Nexavant treatment led to a unique immune response, immune cell infiltration, and suppression of tumor growth in various animal cancer models. Nexavant therapy outperformed anti-PD-1 antibody treatment in all the tested models and showed a synergistic effect in combinational therapy, especially in well-defined cold tumor models. The effect was similar to that of nivolumab in a humanized mouse model. Intranasal instillation of Nexavant led to the recruitment of immune cells (NK, CD4+ T, and CD8+ T) to the lungs, suppressing lung metastasis and improving animal survival. Our study highlighted Nexavant's defined nature for clinical use and unique signaling pathways and its potential as a standalone anti-cancer agent or in combination with anti-PD-1 antibodies.

2.
Antimicrob Agents Chemother ; 66(9): e0076222, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36040172

ABSTRACT

Accumulating evidence suggests that drug repurposing has drawn attention as an anticipative strategy for controlling tuberculosis (TB), considering the dwindling drug discovery and development pipeline. In this study, we explored the antigout drug febuxostat and evaluated its antibacterial activity against Mycobacterium species. Based on MIC evaluation, we found that febuxostat treatment significantly inhibited mycobacterial growth, especially that of Mycobacterium tuberculosis (Mtb) and its phylogenetically close neighbors, M. bovis, M. kansasii, and M. shinjukuense, but these microorganisms were not affected by allopurinol and topiroxostat, which belong to a similar category of antigout drugs. Febuxostat concentration-dependently affected Mtb and durably mediated inhibitory functions (duration, 10 weeks maximum), as evidenced by resazurin microtiter assay, time-kill curve analysis, phenotypic susceptibility test, and the Bactec MGIT 960 system. Based on these results, we determined whether the drug shows antimycobacterial activity against Mtb inside murine bone marrow-derived macrophages (BMDMs). Notably, febuxostat markedly suppressed the intracellular growth of Mtb in a dose-dependent manner without affecting the viability of BMDMs. Moreover, orally administered febuxostat was efficacious in a murine model of TB with reduced bacterial loads in both the lung and spleen without the exacerbation of lung inflammation, which highlights the drug potency. Taken together, unexpectedly, our data demonstrated that febuxostat has the potential for treating TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Allopurinol , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Febuxostat/pharmacology , Febuxostat/therapeutic use , Mice , Tuberculosis/drug therapy , Tuberculosis/microbiology
3.
Br J Pharmacol ; 179(15): 3951-3969, 2022 08.
Article in English | MEDLINE | ID: mdl-35301712

ABSTRACT

BACKGROUND AND PURPOSE: To diversify and expand possible tuberculosis (TB) drug candidates and maximize limited global resources, we investigated the effect of colchicine, an FDA-approved anti-gout drug, against Mycobacterium tuberculosis (Mtb) infection because of its immune-modulating effects. EXPERIMENTAL APPROACH: We evaluated the intracellular anti-Mtb activity of different concentrations of colchicine in murine bone marrow-derived macrophages (BMDMs). To elucidate the underlying mechanism, RNA sequencing, biological and chemical inhibition assays, and Western blot, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA), and immunohistochemical analyses were employed. Finally, type I interferon-dependent highly TB-susceptible A/J mice were challenged with virulent Mtb H37Rv, and the host-directed therapeutic effect of oral colchicine administration on bacterial burdens and lung inflammation was assessed 30 days post-infection (2.5 mg·kg-1 every 2 days). KEY RESULTS: Colchicine reinforced the anti-Mtb activity of BMDMs without affecting cell viability, indicating that colchicine facilitated macrophage immune activation upon Mtb infection. The results from RNA sequencing, NLRP3 knockout BMDM, IL-1 receptor blockade, and immunohistochemistry analyses revealed that this unexpected intracellular anti-Mtb activity of colchicine was mediated through NLRP3-dependent IL-1ß signalling and Cox-2-regulated PGE2 production in macrophages. Consequently, the TB-susceptible A/J mouse model showed remarkable protection, with decreased bacterial loads in both the lungs and spleens of oral colchicine-treated mice, with significantly elevated Cox-2 expression at infection sites. CONCLUSIONS AND IMPLICATIONS: The repurposing of colchicine against Mtb infection in this study highlights its unique function in macrophages upon Mtb infection and its novel potential use in treating TB as host-directed or adjunctive therapy.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Colchicine/metabolism , Colchicine/pharmacology , Cyclooxygenase 2/metabolism , Dinoprostone/pharmacology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
4.
Vaccines (Basel) ; 8(2)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545304

ABSTRACT

The antigen-specific Th17 responses in the lungs for improved immunity against Mycobacterium tuberculosis (Mtb) infection are incompletely understood. Tuberculosis (TB) vaccine candidate HSP90-ESAT-6 (E6), given as a Bacillus Calmette-Guérin (BCG)-prime boost regimen, confers superior long-term protection against the hypervirulent Mtb HN878 infection, compared to BCG or BCG-E6. Taking advantage of protective efficacy lead-out, we found that ESAT-6-specific multifunctional CD4+IFN-γ+IL-17+ T-cells optimally correlated with protection level against Mtb infection both pre-and post-challenge. Macrophages treated with the supernatant of re-stimulated lung cells from HSP90-E6-immunised mice significantly restricted Mtb growth, and this phenomenon was abrogated by neutralising anti-IFN-γ and/or anti-IL-17 antibodies. We identified a previously unrecognised role for IFN-γ/IL-17 synergism in linking anti-mycobacterial phagosomal activity to enhance host control against Mtb infection. The implications of our findings highlight the fundamental rationale for why and how Th17 responses are essential in the control of Mtb, and for the development of novel anti-TB subunit vaccines.

5.
Virulence ; 11(1): 430-445, 2020 12.
Article in English | MEDLINE | ID: mdl-32403973

ABSTRACT

Toll-like receptors (TLRs) play critical roles in the innate recognition of Mycobacterium tuberculosis (Mtb) by host immune cells. However, controversy has arisen regarding the role of TLR4 in determining the outcomes of Mtb infection. To address this controversy, the function of TLR4 in the induction of an optimal protective immune response against the highly virulent Mtb K-infection was comparatively investigated in C3 H/HeJ (TLR4-deficient mutant) and C3 H/HeN (TLR4-competent wild-type) mice. Interestingly, following Mtb infection, C3 H/HeJ mice showed a more severe disease phenotype than C3 H/HeN mice, exhibiting reduced weight and a marked increase in bacterial burden along with necrotic lung inflammation. Analysis of the immune cell composition revealed significantly increased neutrophils in the lung and significant production of IL-10 accompanied by the impairment of the protective Th1 response in C3 H/HeJ mice. Reducing the neutrophil numbers by treating C3 H/HeJ mice with an anti-Ly6 G monoclonal antibody (mAb) and blocking IL-10 signaling with an anti-IL-10 receptor mAb reduced the excessive lung inflammation and bacterial burden in C3 H/HeJ mice. Therefore, abundant IL-10 signaling and neutrophils have detrimental effects in TLR4-deficient mice during Mtb infection. However, the blockade of IL-10 signaling produced an increase in the CD11bhiLy6 Ghi neutrophil population, but the phenotypes of these neutrophils were different from those of the CD11bintLy6 Gint neutrophils from mice with controlled infections. Collectively, these results show that TLR4 positively contributes to the generation of an optimal protective immunity against Mtb infection. Furthermore, investigating the TLR4-mediated response will provide insight for the development of effective control measures against tuberculosis.


Subject(s)
Signal Transduction/immunology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Tuberculosis/immunology , Animals , Bacterial Load , Cytokines/immunology , Immunity, Innate , Lung/microbiology , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms
6.
J Cell Sci ; 132(17)2019 09 05.
Article in English | MEDLINE | ID: mdl-31371491

ABSTRACT

In a previous study, we have identified MTBK_24820, the complete protein form of PPE39 in the hypervirulent Mycobacterium tuberculosis (Mtb) strain Beijing/K by using comparative genomic analysis. PPE39 exhibited vaccine potential against Mtb challenge in a murine model. Thus, in this present study, we characterize PPE39-induced immunological features by investigating the interaction of PPE39 with dendritic cells (DCs). PPE39-treated DCs display reduced dextran uptake and enhanced MHC-I, MHC-II, CD80 and CD86 expression, indicating that this PPE protein induces phenotypic DC maturation. In addition, PPE39-treated DCs produce TNF-α, IL-6 and IL-12p70 to a similar and/or greater extent than lipopolysaccharide-treated DCs in a dose-dependent manner. The activating effect of PPE39 on DCs was mediated by TLR4 through downstream MAPK and NF-κB signaling pathways. Moreover, PPE39-treated DCs promoted naïve CD4+ T-cell proliferation accompanied by remarkable increases of IFN-γ and IL-2 secretion levels, and an increase in the Th1-related transcription factor T-bet but not in Th2-associated expression of GATA-3, suggesting that PPE39 induces Th1-type T-cell responses through DC activation. Collectively, the results indicate that the complete form of PPE39 is a so-far-unknown TLR4 agonist that induces Th1-cell biased immune responses by interacting with DCs.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Antigens, Bacterial/immunology , Dendritic Cells/immunology , Mycobacterium tuberculosis/immunology , Th1 Cells/immunology , Animals , Bacterial Proteins/immunology , Cell Differentiation/immunology , Cell Polarity/immunology , Cell Proliferation , Dendritic Cells/microbiology , Humans , Lipopolysaccharides/pharmacology , Mice , Mycobacterium tuberculosis/genetics , Signal Transduction , Th1 Cells/microbiology , Tuberculosis Vaccines/immunology
7.
Immune Netw ; 19(2): e13, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31089440

ABSTRACT

6-kDa early secretory antigenic target (ESAT6), a virulent factor of Mycobacterium tuberculosis, is involved in immune regulation. However, the underlying mechanism behind the activation and maturation of dendritic cells (DCs) by ESAT6 remains unclear. In this study, we investigated the effect on TLRs signaling on the regulation of ESAT6-induced activation and maturation of DCs. ESAT6 induced production of IL-6, TNF-α, and IL-12p40 in bone marrow-derived dendritic cells (BMDCs) from wild-type and TLR2-deficient mice, with this induction abolished in TLR4-deficient cells. NF-κB is essential for the ESAT6-induced production of the cytokines in BMDCs. TLR4 was also required for ESAT6-induced activation of NF-κB and MAPKs in BMDCs. ESAT6 additionally upregulated the expression of surface molecules CD80, CD86, and MHC-II, and also promoted the ability of CD4+ T cells to secrete IFN-γ via the TLR4-dependent pathway. Our findings suggest that TLR4 is critical in the activation and maturation of DCs in response to ESAT6.

8.
Int J Biol Sci ; 15(2): 464-480, 2019.
Article in English | MEDLINE | ID: mdl-30745835

ABSTRACT

Recently, interest in IL-15-differentiated cells has increased; however, the phenotypic definition of IL-15-differentiated bone marrow-derived cells (IL-15-DBMCs) is still under debate, particularly the generation of IFN-γ-producing innate cells such as premature NK (pre-mNK) cells, natural killer dendritic cells (NKDCs), interferon-producing killer dendritic cells (IKDCs), and type 1 innate lymphoid cells (ILC1s), all of which are IL-15-dependent. Here, we revisited the immunophenotypic characteristics of IFN-γ-producing IL-15-DBMCs and their functional role in the control of intracellular Mycobacterium tuberculosis (Mtb) infection. When comparing the cytokine levels between bone marrow-derived dendritic cells (BMDCs) and IL-15-DBMCs upon stimulation with various TLR agonists, only the CD11cint population of IL-15-DBMCs produced significant levels of IFN-γ, decreased levels of MHC-II, and increased levels of B220. Neither BMDCs nor IL-15-DBMCs were found to express DX5 or NK1.1, which are representative markers for the NK cell lineage and IKDCs. When the CD11cintB220+ population of IL-15-DBMCs was enriched, the Thy1.2+Sca-1+ population showed a marked increase in IFN-γ production. In addition, while depletion of the B220+ and Thy1.2+ populations of IL-15-DBMCs, but not the CD19+ population, inhibited IFN-γ production, enrichment of these cell populations increased IFN-γ. Ultimately, co-culture of sorted IFN-γ-producing B220+Thy1.2+ IL-15-DBMCs with Mtb-infected macrophages resulted in control of the intracellular growth of Mtb via the IFN-γ-nitric oxide axis in a donor cell number-dependent manner. Taken together, the results indicate that IFN-γ-producing IL-15-DBMCs could be redefined as CD11cintB220+Thy1.2+Sca-1+ cells, which phenotypically resemble both IKDCs and ILC1s, and may have therapeutic potential for controlling infectious intracellular bacteria such as Mtb.


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Interferon-gamma/metabolism , Interleukin-15/metabolism , Animals , CD11c Antigen/metabolism , Cell Differentiation/physiology , Female , Flow Cytometry , Leukocyte Common Antigens/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice, Inbred C57BL , Mycobacterium tuberculosis
9.
FASEB J ; 33(5): 6483-6496, 2019 05.
Article in English | MEDLINE | ID: mdl-30753099

ABSTRACT

Bacillus Calmette-Guerin vaccine confers insufficient pulmonary protection against tuberculosis (TB), particularly the Mycobacterium tuberculosis (Mtb) Beijing strain infection. Identification of vaccine antigens (Ags) by considering Mtb genetic diversity is crucial for the development of improved TB vaccine. MTBK_20640, a new Beijing genotype-specific proline-glutamic acid-family Ag, was identified by comparative genomic analysis. Its immunologic features were characterized by evaluating interactions with dendritic cells (DCs), and immunogenicity and vaccine efficacy were determined against highly virulent Mtb Beijing outbreak Korean Beijing (K) strain and HN878 strain in murine infection model. MTBK_20640 induced DCs via TLR2 and downstream MAPK and NF-κB signaling pathways, effectively promoting naive CD4-positive (CD4+) T-cell proliferation and IFN-γ production. Different IFN-γ response was observed in mice infected with Mtb K or reference H37Rv strain. Significant induction of T helper type 1 cell-polarized Ag-specific multifunctional CD4+ T cells and a marked Ag-specific IgG2c response were observed in mice immunized with MTBK_20640/glucopyranosyl lipid adjuvant-stable emulsion. The immunization conferred long-term protection against 2 Mtb Beijing outbreak strains, as evidenced by a significant reduction in colony-forming units in the lung and spleen and reduced lung inflammation. MTBK_20640 vaccination conferred long-term protection against highly virulent Mtb Beijing strains. MTBK_20640 may be developed into a novel Ag component in multisubunit TB vaccines in the future.-Kwon, K. W., Choi, H.-H., Han, S. J., Kim, J.-S., Kim, W. S., Kim, H., Kim, L.-H., Kang, S. M., Park, J., Shin, S. J. Vaccine efficacy of a Mycobacterium tuberculosis Beijing-specific proline-glutamic acid (PE) antigen against highly virulent outbreak isolates.


Subject(s)
Antigens, Bacterial , Disease Outbreaks/prevention & control , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis, Pulmonary , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Disease Models, Animal , Female , Humans , Male , Mice , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Th1 Cells/immunology , Th1 Cells/pathology , Tuberculosis Vaccines/genetics , Tuberculosis Vaccines/immunology , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...