Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Cancer Cell ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906155

ABSTRACT

Tumor-specific CD8+ T cells are frequently dysfunctional and unable to halt tumor growth. We investigated whether tumor-specific CD4+ T cells can be enlisted to overcome CD8+ T cell dysfunction within tumors. We find that the spatial positioning and interactions of CD8+ and CD4+ T cells, but not their numbers, dictate anti-tumor responses in the context of adoptive T cell therapy as well as immune checkpoint blockade (ICB): CD4+ T cells must engage with CD8+ T cells on the same dendritic cell during the effector phase, forming a three-cell-type cluster (triad) to license CD8+ T cell cytotoxicity and cancer cell elimination. When intratumoral triad formation is disrupted, tumors progress despite equal numbers of tumor-specific CD8+ and CD4+ T cells. In patients with pleural mesothelioma treated with ICB, triads are associated with clinical responses. Thus, CD4+ T cells and triads are required for CD8+ T cell cytotoxicity during the effector phase and tumor elimination.

2.
World J Oncol ; 15(2): 169-180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545484

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer resistant to current therapies, including oxaliplatin (Oxa). Growing evidence supports the ability of cancers to harness sphingolipid metabolism for survival. Sphingosine-1-phosphate (S1P) is an anti-apoptotic, pro-survival mediator that can influence cellular functions such as endoplasmic reticulum (ER) stress. We hypothesize that PDAC drives dysregulated sphingolipid metabolism and that S1P inhibition can enhance ER stress to improve therapeutic response to Oxa in PDAC. Methods: RNA sequencing data of sphingolipid mediators from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) datasets were analyzed. Murine and human PDAC cell lines were treated with small interfering RNA (siRNA) against sphingosine kinase-2 (SPHK2) or ABC294640 (ABC) and incubated with combinations of vehicle control or Oxa. In an orthotopic syngeneic KPC PDAC model, tumors were treated with either vehicle control, Oxa, ABC, or combination therapy. Results: RNA sequencing analysis revealed multiple significantly differentially expressed sphingolipid mediators (P < 0.05). In vitro, both siRNA knockdown of SPHK2 and ABC sensitized cells to Oxa therapy (P < 0.05), and induced eukaryotic initiation factor 2α (eIF2α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) phosphorylation, hallmarks of ER stress. In vitro therapy also increased extracellular high mobility group box 1 (HMGB1) release (P < 0.05), necessary for immunogenic cell death (ICD). In vivo combination therapy increased apoptotic markers as well as the intensity of HMGB1 staining compared to control (P < 0.05). Conclusions: Our evidence suggests that sphingolipid metabolism is dysregulated in PDAC. Furthermore, S1P inhibition can sensitize PDAC to Oxa therapy through increasing ER stress and can potentiate ICD induction. This highlights a potential therapeutic target for chemosensitizing PDAC as well as an adjunct for future chemoimmunotherapy strategies.

3.
Cells ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38534395

ABSTRACT

ATP synthase inhibitory factor subunit 1 (IF1) is an inhibitory subunit of mitochondrial ATP synthase, playing a crucial role in regulating mitochondrial respiration and energetics. It is well-established that IF1 interacts with the F1 sector of ATP synthase to inhibit the reversal rotation and, thus, ATP hydrolysis. Recent evidence supports that IF1 also inhibits forward rotation or the ATP synthesis activity. Adding to the complexity, IF1 may also facilitate mitophagy and cristae formation. The implications of these complex actions of IF1 for cellular function remain obscure. In the present study, we found that IF1 expression was markedly upregulated in hypoxic MEFs relative to normoxic MEFs. We investigate how IF1 affects cellular growth and function in cultured mouse embryonic fibroblasts derived from mouse lines with systemic IF1 overexpression and knockout under normoxia and hypoxia. Cell survival and proliferation analyses revealed that IF1 overexpression exerted limited effects on cellular viability but substantially increased proliferation under normoxia, whereas it facilitated both cellular viability and proliferation under hypoxia. The absence of IF1 may have a pro-survival effect but not a proliferative one in both normoxia and hypoxia. Cellular bioenergetic analyses revealed that IF1 suppressed cellular respiration when subjected to normoxia and was even more pronounced when subjected to hypoxia with increased mitochondrial ATP production. In contrast, IF1 knockout MEFs showed markedly increased cellular respiration under both normoxia and hypoxia with little change in mitochondrial ATP. Glycolytic stress assay revealed that IF1 overexpression modestly increased glycolysis in normoxia and hypoxia. Interestingly, the absence of IF1 in MEFs led to substantial increases in glycolysis. Therefore, we conclude that IF1 mainly inhibits cellular respiration and enhances cellular glycolysis to preserve mitochondrial ATP. On the other hand, IF1 deletion can significantly facilitate cellular respiration and glycolysis without leading to mitochondrial ATP deficit.


Subject(s)
Oxidative Phosphorylation , Proteins , Animals , Mice , Proteins/metabolism , Fibroblasts/metabolism , Hyperplasia , Hypoxia , Cell Proliferation , Adenosine Triphosphate/metabolism
4.
Front Immunol ; 15: 1324093, 2024.
Article in English | MEDLINE | ID: mdl-38361928

ABSTRACT

Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with poor survival and limited treatment options. PDAC resistance to immunotherapeutic strategies is multifactorial, but partially owed to an immunosuppressive tumor immune microenvironment (TiME). However, the PDAC TiME is heterogeneous and harbors favorable tumor-infiltrating lymphocyte (TIL) populations. Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop within non-lymphoid tissue under chronic inflammation in multiple contexts, including cancers. Our current understanding of their role within the PDAC TiME remains limited; TLS are complex structures with multiple anatomic features such as location, density, and maturity that may impact clinical outcomes such as survival and therapy response in PDAC. Similarly, our understanding of methods to manipulate TLS is an actively developing field of research. TLS may function as anti-tumoral immune niches that can be leveraged as a therapeutic strategy to potentiate both existing chemotherapeutic regimens and potentiate future immune-based therapeutic strategies to improve patient outcomes. This review seeks to cover anatomy, relevant features, immune effects, translational significance, and future directions of understanding TLS within the context of PDAC.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Tertiary Lymphoid Structures , Humans , Pancreatic Neoplasms/pathology , Medical Oncology , Tumor Microenvironment
5.
Front Oncol ; 13: 1274783, 2023.
Article in English | MEDLINE | ID: mdl-38074633

ABSTRACT

Introduction: Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with limited response to both chemotherapy and immunotherapy. Pre-treatment tumor features within the tumor immune microenvironment (TiME) may influence treatment response. We hypothesized that the pre-treatment TiME composition differs between metastatic and primary lesions and would be associated with response to modified FOLFIRINOX (mFFX) or gemcitabine-based (Gem-based) therapy. Methods: Using RNAseq data from a cohort of treatment-naïve, advanced PDAC patients in the COMPASS trial, differential gene expression analysis of key immunomodulatory genes in were analyzed based on multiple parameters including tumor site, response to mFFX, and response to Gem-based treatment. The relative proportions of immune cell infiltration were defined using CIBERSORTx and Dirichlet regression. Results: 145 samples were included in the analysis; 83 received mFFX, 62 received Gem-based therapy. Metastatic liver samples had both increased macrophage (1.2 times more, p < 0.05) and increased eosinophil infiltration (1.4 times more, p < 0.05) compared to primary lesion samples. Further analysis of the specific macrophage phenotypes revealed an increased M2 macrophage fraction in the liver samples. The pre-treatment CD8 T-cell, dendritic cell, and neutrophil infiltration of metastatic samples were associated with therapy response to mFFX (p < 0.05), while mast cell infiltration was associated with response to Gem-based therapy (p < 0.05). Multiple immunoinhibitory genes such as ADORA2A, CSF1R, KDR/VEGFR2, LAG3, PDCD1LG2, and TGFB1 and immunostimulatory genes including C10orf54, CXCL12, and TNFSF14/LIGHT were significantly associated with worse survival in patients who received mFFX (p = 0.01). There were no immunomodulatory genes associated with survival in the Gem-based cohort. Discussion: Our evidence implies that essential differences in the PDAC TiME exist between primary and metastatic tumors and an inflamed pretreatment TiME is associated with mFFX response. Defining components of the PDAC TiME that influence therapy response will provide opportunities for targeted therapeutic strategies that may need to be accounted for in designing personalized therapy to improve outcomes.

6.
Bioengineering (Basel) ; 10(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37892959

ABSTRACT

Spinal-pelvic parameters are utilized in orthopedics for assessing patients' curvature and body alignment in diagnosing, treating, and planning surgeries for spinal and pelvic disorders. Segmenting and autodetecting the whole spine from lateral radiographs is challenging. Recent efforts have employed deep learning techniques to automate the segmentation and analysis of whole-spine lateral radiographs. This study aims to develop an artificial intelligence (AI)-based deep learning approach for the automated segmentation, alignment, and measurement of spinal-pelvic parameters through whole-spine lateral radiographs. We conducted the study on 932 annotated images from various spinal pathologies. Using a deep learning (DL) model, anatomical landmarks of the cervical, thoracic, lumbar vertebrae, sacrum, and femoral head were automatically distinguished. The algorithm was designed to measure 13 radiographic alignment and spinal-pelvic parameters from the whole-spine lateral radiographs. Training data comprised 748 digital radiographic (DR) X-ray images, while 90 X-ray images were used for validation. Another set of 90 X-ray images served as the test set. Inter-rater reliability between orthopedic spine specialists, orthopedic residents, and the DL model was evaluated using the intraclass correlation coefficient (ICC). The segmentation accuracy for anatomical landmarks was within an acceptable range (median error: 1.7-4.1 mm). The inter-rater reliability between the proposed DL model and individual experts was fair to good for measurements of spinal curvature characteristics (all ICC values > 0.62). The developed DL model in this study demonstrated good levels of inter-rater reliability for predicting anatomical landmark positions and measuring radiographic alignment and spinal-pelvic parameters. Automated segmentation and analysis of whole-spine lateral radiographs using deep learning offers a promising tool to enhance accuracy and efficiency in orthopedic diagnostics and treatments.

7.
J Crit Care ; 78: 154402, 2023 12.
Article in English | MEDLINE | ID: mdl-37634293

ABSTRACT

PURPOSE: To evaluate the population pharmacokinetics and pharmacodynamics of teicoplanin in elderly critically ill patients with pneumonia for optimal dosages. METHODS: Fifteen critically ill patients (9 men) ≥ 60 years received teicoplanin 6 mg/kg for three doses followed by standard maintenance doses (6 mg/kg q24h) with renal dosing adjustment. Serial plasma samples from all patients were analyzed simultaneously by population pharmacokinetic modeling using NONMEM. Probability of target attainment (PTA) was calculated through Monte Carlo simulations for various dosing regimens to achieve adequate systemic exposures. RESULTS: The median (interquartile range, IQR) age, body mass index, and creatinine clearance (CrCl) was 75 (64-78) years, 22.5 (20.8-25.4) kg/m2, and 64 (47-106) mL/min, respectively. The median (IQR) peak and trough concentration was 46.5 (42.7-51.0) and 8.7 (7.2-9.5) mg/L. The population pharmacokinetic model showed slower clearance (CL) and larger peripheral volume of distribution (V2) in patients with reduced CrCl: CL (L/h) = 0.629 × (CrCl/64)0.656, V2 (L) = 55.7 × (CrCl/64)-0.665. Model-based simulations showed PTAs ≥85% only for higher-dose regimens (12 mg/kg) up to an MIC of 0.5 mg/L. CONCLUSIONS: Standard teicoplanin dosages for pneumonia may provide inadequate systemic exposures in elderly critically ill patients. High-dose regimens should be considered as empiric therapy or for less susceptible pathogens.


Subject(s)
Pneumonia , Teicoplanin , Male , Humans , Aged , Teicoplanin/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Critical Illness , Body Mass Index , Pneumonia/drug therapy , Monte Carlo Method , Microbial Sensitivity Tests
8.
Mycobiology ; 51(3): 178-185, 2023.
Article in English | MEDLINE | ID: mdl-37359959

ABSTRACT

The cell wall integrity (CWI) signaling pathway plays important roles in the dissemination and infection of several plant pathogenic fungi. However, its roles in the pepper fruit anthracnose fungus Colletotrichum scovillei remain uninvestigated. In this study, the major components of the CWI signaling pathway-CsMCK1 (MAPKKK), CsMKK1 (MAPKK), and CsMPS1 (MAPK)-were functionally characterized in C. scovillei via homology-dependent gene replacement. The ΔCsmck1, ΔCsmkk1, and ΔCsmps1 mutants showed impairments in fungal growth, conidiation, and tolerance to CWI and salt stresses. Moreover, ΔCsmck1, ΔCsmkk1, and ΔCsmps1 failed to develop anthracnose disease on pepper fruits due to defects in appressorium formation and invasive hyphae growth. These results suggest that CsMCK1, CsMKK1, and CsMPS1 play important roles in mycelial growth, conidiation, appressorium formation, plant infection, and stress adaption of C. scovillei. These findings will contribute to a better understanding of the roles of the CWI signaling pathway in the development of pepper fruit anthracnose disease.

9.
Nat Commun ; 14(1): 1069, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828809

ABSTRACT

Primary sclerosing cholangitis (PSC) is a rare autoimmune bile duct disease that is strongly associated with immune-mediated disorders. In this study, we implemented multitrait joint analyses to genome-wide association summary statistics of PSC and numerous clinical and epidemiological traits to estimate the genetic contribution of each trait and genetic correlations between traits and to identify new lead PSC risk-associated loci. We identified seven new loci that have not been previously reported and one new independent lead variant in the previously reported locus. Functional annotation and fine-mapping nominated several potential susceptibility genes such as MANBA and IRF5. Network-based in silico drug efficacy screening provided candidate agents for further study of pharmacological effect in PSC.


Subject(s)
Cholangitis, Sclerosing , Genome-Wide Association Study , Humans , Phenotype , Interferon Regulatory Factors/genetics , Polymorphism, Single Nucleotide
10.
J Clin Nurs ; 32(15-16): 4827-4842, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36217241

ABSTRACT

AIMS: To explore nurse's, physician's and family member's experiences of withholding or withdrawing life-sustaining treatment in an intensive care unit. BACKGROUND: In South Korea, withholding or withdrawing life-sustaining treatment is legalised by the enforcement of the Hospice, Palliative Care and Life-sustaining Treatment Decision-making Act (2018). The Act (2018) is the first legal ground for making decisions regarding life-sustaining treatment in South Korea. DESIGN: Focused ethnography. The standards for reporting qualitative research checklist is used. METHODS: Interview data are collected between August 2018 and January 2019 using semi-structured interviews with 23 nurses, 10 physicians and four family members in a South Korean intensive care unit. The interview data are analysed following the thematic analysis of Braun and Clarke. RESULTS: An overarching theme of 'constructing death' is identified from the experiences of nurses, physicians and family members regarding withholding or withdrawing life-sustaining treatment in a South Korean intensive care unit. Family members had the strongest power in the withholding or withdrawing life-sustaining treatment process whilst the process had to be based on medical consideration. All the research participants shared the purpose and motivation of withholding or withdrawing life-sustaining treatment as the dying patient's dignity. Due to the South Korean national health insurance system, the relationships between medical staff and family members were driven by customer ideology. CONCLUSION: The impact and linkage of the context of familism culture and health insurance with the process of withholding or withdrawing life-sustaining treatment in South Korea are shown in this research. The findings of this research inspire future studies to uncover the impact of the cultural context in the decision-making process of a patient's death, to explore the dynamics of family members under cultural values and to explore the influence of the healthcare system and medical costs on the relationships between medical staff and family members. RELEVANCE TO CLINICAL PRACTICE: By integrating the experiences of nurses, physicians and family members, the findings of this study inform the shared values in the context of familism culture and the health insurance system. In particular, understanding family dynamics when a patient's dying and death as a result of withholding or withdrawing life-sustaining treatment informs nurses to provide quality of care in the intensive care setting. Therefore, the findings of this research contribute to distinguishing the priority in care when withholding or withdrawing life-sustaining treatment, rapidly changing the aims of care from the patient's recovery to a dignified death.


Subject(s)
Physicians , Terminal Care , Humans , Withholding Treatment , Life Support Care , Decision Making , Intensive Care Units , Family
11.
Medicina (Kaunas) ; 58(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36143901

ABSTRACT

Background and Objectives: The coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to be a pandemic even in 2022. As the initial symptoms of COVID-19 overlap with those of infections from other respiratory viruses, an accurate and rapid diagnosis of COVID-19 is essential for administering appropriate treatment to patients. Currently, the most widely used method for detecting respiratory viruses is based on real-time polymerase chain reaction (PCR) and includes reverse-transcription real-time quantitative PCR (RT-qPCR). However, RT-qPCR assays require sophisticated facilities and are time-consuming. This study aimed to develop a real-time quantitative loop-mediated isothermal amplification (RT-qLAMP) assay and compare its analytical performance with RT-qPCR. Materials and Methods: A total of 315 nasopharyngeal swabs from patients with symptoms of respiratory infections were included in this study. A primary screening of the specimens was performed using RT-qPCR. RNA/DNA from standard strains for respiratory viruses and heat-inactivated preparations of standard strains for SARS-CoV-2 were used to evaluate the accuracy and target specificity of the RT-qLAMP assay. Results: We successfully developed an RT-qLAMP assay for seven respiratory viruses: respiratory syncytial virus (RSV) A, RSV B, adenovirus, influenza (Flu) A (H1N1 and H3N2), Flu B, and SARS-CoV-2. RT-qLAMP was performed in a final reaction volume of 9.6 µL. No cross-reactivity was observed. Compared with the RT-PCR results, the sensitivity and specificity of the RT-qLAMP assay were 95.1% and 100%, respectively. The agreement between the two methods was 97.1%. The median amplification time to RT-qLAMP positivity was 22:34 min (range: 6:80-47:98 min). Conclusions: The RT-qLAMP assay requires a small number of reagents and samples and is performed with an isothermal reaction. This study established a fast, simple, and sensitive test that can be applied to point-of-care testing devices to facilitate the detection of respiratory viruses, including SARS-CoV-2.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , COVID-19/diagnosis , Humans , Influenza A Virus, H3N2 Subtype , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA , SARS-CoV-2/genetics , Sensitivity and Specificity
12.
Sensors (Basel) ; 22(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35898055

ABSTRACT

In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly in the conventional CFAR algorithm, the target detection performance is severely degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder (AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system. In the AE, the entire detection result is compressed at the encoder side, and only significant signal components are recovered on the decoder side. In this work, by changing the number of hidden layers and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio in the target detection result is determined. To evaluate the performance of the proposed method, the AE-based target detection result is compared with the target detection results of conventional CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the actual target position, the proposed AE-based target detection shows the highest similarity with a correlation of 0.73 or higher.

13.
Medicina (Kaunas) ; 58(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35630098

ABSTRACT

Background and Objectives: The molecular mechanisms of the development of acute kidney injury (AKI) after kidney transplantation are not yet clear. The aim of this study was to confirm the genes and mechanisms related to AKI after transplantation. Materials and Methods: To investigate potential genetic targets for AKI, an analysis of the gene expression omnibus database was used to identify key genes and pathways. After identification of differentially expressed genes, Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were performed. We identified the hub genes and established the protein-protein interaction network. Results: Finally, we identified 137 differentially expressed genes (59 upregulated genes and 16 downregulated genes). AKAP12, AMOT, C3AR1, LY96, PIK3AP1, PLCD4, PLCG2, TENM2, TLR2, and TSPAN5 were filtrated by the hub genes related to the development of post-transplant AKI from the Protein-Protein Interaction (PPI) network. Conclusions: This may provide important evidence of the diagnostic and therapeutic biomarker of AKI.


Subject(s)
Acute Kidney Injury , Kidney Transplantation , Acute Kidney Injury/genetics , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Humans , Kidney Transplantation/adverse effects
14.
Geroscience ; 44(4): 2171-2194, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35357643

ABSTRACT

Intermittent fasting (IF) remains the most effective intervention to achieve robust anti-aging effects and attenuation of age-related diseases in various species. Epigenetic modifications mediate the biological effects of several environmental factors on gene expression; however, no information is available on the effects of IF on the epigenome. Here, we first found that IF for 3 months caused modulation of H3K9 trimethylation (H3K9me3) in the cerebellum, which in turn orchestrated a plethora of transcriptomic changes involved in robust metabolic switching processes commonly observed during IF. Second, a portion of both the epigenomic and transcriptomic modulations induced by IF was remarkably preserved for at least 3 months post-IF refeeding, indicating that memory of IF-induced epigenetic changes was maintained. Notably, though, we found that termination of IF resulted in a loss of H3K9me3 regulation of the transcriptome. Collectively, our study characterizes the novel effects of IF on the epigenetic-transcriptomic axis, which controls myriad metabolic processes. The comprehensive analyses undertaken in this study reveal a molecular framework for understanding how IF impacts the metabolo-epigenetic axis of the brain and will serve as a valuable resource for future research.


Subject(s)
Epigenomics , Transcriptome , Fasting , Gene Expression Profiling , Brain
15.
World Neurosurg ; 162: e73-e85, 2022 06.
Article in English | MEDLINE | ID: mdl-35202877

ABSTRACT

OBJECTIVE: Kyphoplasty (KP) is a surgery used to reduce pain and increase stability by injecting medical bone cement into broken vertebrae. The purpose of this study was to determine the ideal amount of cement and injection site by analyzing forces with the finite element method. METHODS: We modeled the anatomical structure of the vertebra and injected the cement at T12. By increasing the amount of cement from 1 cc to 22 cc, stress applied to T11 and L1 cortical was calculated. In addition, stress applied to the adjacent KP level was calculated with different injection sites (medial, anterosuperior, posterosuperior, anteroinferior, and posteroinferior). After 5 cc cement was inserted, adjacent end plate stress was analyzed. RESULTS: In this study, break point adjacent bone stress according to the capacity of cement was bimodal. Flexion/extension and lateral bending conditions showed similar break points (11.5-11.7 cc and 18.5-18.6 cc, respectively). When cement injection was changed, front under and back under had the highest stress values among various parts, whereas the center position showed the lowest stress value. CONCLUSIONS: With increasing amount of bone cement, stress on the upper and lower end plates of the cemented segment increased significantly. Thus, increasing cement amount to be more than 11.5 cc has a potential risk of adjacent fracture. Centrally injected bone cement can lower the risk of adjacent fracture after percutaneous KP.


Subject(s)
Fractures, Compression , Kyphoplasty , Osteoporotic Fractures , Spinal Fractures , Bone Cements , Finite Element Analysis , Fractures, Compression/surgery , Humans , Osteoporotic Fractures/surgery , Spinal Fractures/surgery , Spine/surgery
16.
J Patient Saf ; 18(1): 1-8, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34951606

ABSTRACT

OBJECTIVES: The objective of this study was to characterize the current status of medication errors (MEs) throughout the medication therapy process from prescribing to use and monitoring in a medical intensive care unit (MICU) in Korea. METHODS: Four trained research pharmacists collected data through retrospectively reviewing electronic medical records for adults hospitalized in the MICU in 2017. The occurrence of MEs was determined through interprofessional team discussion led by an academic faculty pharmacist and a medical intensivist based on the medication administration records (MARs). The type of MEs and the consequent ME-related outcome severity were categorized according to the Pharmaceutical Care Network Europe and the National Coordinating Council for Medication Error Reporting and Prevention, respectively. RESULTS: Overall, electronic medical records for 293 patients with 78,761 MARs were reviewed in this study. At least one type of ME occurred in 271 patients (92.5%) in association with 16,203 MARs (21%), primarily caused by inappropriate dose (35.5%), drug (27.8%), and treatment duration (25.1%). Clinically significant harmful events occurred in 24 patients (8%), including life-threatening (n = 5) and death (n = 2) cases. The 2 patients died of enoxaparin-induced fatal hemorrhage and neutropenia associated with ganciclovir and cefepime. Antibiotics were the most common culprit medications leading to clinically significant harmful events. CONCLUSIONS: In conclusion, MEs are prevalent in the MICU in Korea, most commonly prescribing errors. Although mostly benign, harmful events including deaths may occur due to MEs, mainly associated with antibiotics. Systematic strategies to minimize these potentially fatal MEs are urgently needed.


Subject(s)
Medication Errors , Universities , Adult , Hospitals, Teaching , Humans , Intensive Care Units , Medication Errors/prevention & control , Retrospective Studies
17.
Mycobiology ; 50(6): 467-474, 2022.
Article in English | MEDLINE | ID: mdl-36721786

ABSTRACT

Autophagy serves as a survival mechanism and plays important role in nutrient recycling under conditions of starvation, nutrient storage, ad differentiation of plant pathogenic fungi. However, autophagy-related genes have not been investigated in Colletotrichum scovillei, a causal agent of pepper fruit anthracnose disease. ATG8 is involved in autophagosome formation and is considered a marker of autophagy. Therefore, we generated an ATG8 deletion mutant, ΔCsatg8, via homologous recombination to determine the functional roles of CsATG8 in the development and virulence of C. scovillei. Compared with the wild-type, the deletion mutant ΔCsatg8 exhibited a severe reduction in conidiation. Conidia produced by ΔCsatg8 were defective in survival, conidial germination, and appressorium formation. Moreover, conidia of ΔCsatg8 showed reduced lipid amount and PTS1 selectivity. A virulence assay showed that anthracnose development on pepper fruits was reduced in ΔCsatg8. Taken together, our results suggest that CsATG8 plays various roles in conidium production and associated development, and virulence in C. scovillei.

18.
Clin Psychopharmacol Neurosci ; 19(4): 618-627, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34690117

ABSTRACT

OBJECTIVE: The cyclic nucleotide-gated channel (Cng) regulates synaptic efficacy in brain neurons by modulating Ca2+ levels in response to changes in cyclic nucleotide concentrations. This study investigated whether the expression of Cng channel, cyclic nucleotide-gated channel subunit beta 1 (Cngb1) exhibited any relationship with the pathophysiology of schizophrenia in an animal model and whether genetic polymorphisms of the human gene were associated with the progression of schizophrenia in a Korean population. METHODS: We investigated whether Cngb1 expression was related to psychiatric disorders in a mouse model of schizophrenia induced by maternal immune activation. A case-control study was conducted of 275 schizophrenia patients and 410 controls with single-nucleotide polymorphisms (SNPs) in the 5'-near region of CNGB1. RESULTS: Cngb1 expression was decreased in the prefrontal cortex in the mouse model. Furthermore, the genotype frequency of a SNP (rs3756314) of CNGB1 was associated with the risk of schizophrenia. CONCLUSION: Our results suggest that CNGB1 might be associated with schizophrenia susceptibility and maternal immune activation. Consequently, it is hypothesized that CNGB1 may be involved in the pathophysiology of schizophrenia.

19.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166237, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34339838

ABSTRACT

R-loops are naturally occurring transcriptional intermediates containing RNA/DNA hybrids. Excessive R-loops cause genomic instability, DNA damage, and replication stress. Senataxin-associated exonuclease (San1) is a protein that interacts with Senataxin (SETX), a helicase resolving R-loops. It remains unknown if R-loops-induced DNA damage plays a role in the heart, especially in the proliferative neonatal cardiomyocytes (CMs). San1-/- mice were generated using the CRISPR/Cas9 technique. The newborn San1-/- mice show no overt phenotype, but their hearts were smaller with larger, yet fewer CMs. CM proliferation was impaired with reduced cell cycle-related transcripts and proteins. S9.6 staining revealed that excessive R-loops accumulated in the nucleus of neonatal San1-/- CMs. Increased γH2AX staining on newborn and adult heart sections exhibited increased DNA damage. Similarly, San1-/- AC16-cardiomyocytes showed cumulative R-loops and DNA damage, leading to the activation of cell cycle checkpoint kinase ATR and PARP1 hyperactivity, arresting G2/M cell-cycle and CM proliferation. Together, the present study uncovers an essential role of San1 in resolving excessive R-loops that lead to DNA damage and repressing CM proliferation, providing new insights into a novel biological function of San1 in the neonatal heart. San1 may serve as a novel therapeutic target for the treatment of hypoplastic cardiac disorders.


Subject(s)
Cardiomyopathies/genetics , Exodeoxyribonucleases/deficiency , Heart Failure/genetics , Heart Ventricles/pathology , Trans-Activators/deficiency , Animals , Cardiomyopathies/complications , Cardiomyopathies/pathology , Cell Line , DNA Damage , Disease Models, Animal , Exodeoxyribonucleases/genetics , Gene Knockout Techniques , Heart Failure/pathology , Heart Ventricles/cytology , Humans , Mice , Mice, Knockout , Myocytes, Cardiac/pathology , Primary Cell Culture , R-Loop Structures , Trans-Activators/genetics
20.
Acute Crit Care ; 36(3): 249-255, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34311516

ABSTRACT

BACKGROUND: Evidence for using high-flow nasal cannula (HFNC) in hypercapnia is still limited. Most of the clinical studies had been conducted retrospectively, and there had been conflicting reports for the effects of HFNC on hypercapnia correction in prospective studies. Therefore, more evidence is needed to understand the effect of the HFNC in hypercapnia. METHODS: We conducted a multicenter prospective observational study after applying HFNC to 45 hospitalized subjects who had moderate hypercapnia (arterial partial pressure of carbon dioxide [PaCO2], 43-70 mm Hg) without severe respiratory acidosis (pH <7.30). The primary outcome was a change in PaCO2 level in the first 24 hours of HFNC use. The secondary outcomes were changes in other parameters of arterial blood gas analysis, changes in respiration rates, and clinical outcomes. RESULTS: There was a significant decrease in PaCO2 in the first hour of HFNC application (-3.80 mm Hg; 95% confidence interval, -6.35 to -1.24; P<0.001). Reduction of PaCO2 was more prominent in subjects who did not have underlying obstructive lung disease. There was a correction in pH, but no significant changes in respiratory rate, bicarbonate, and arterial partial pressure of oxygen/fraction of inspired oxygen ratio. Mechanical ventilation was not required for 93.3% (42/45) of our study population. CONCLUSIONS: We suggest that HFNC could be a safe alternative for oxygen delivery in hypercapnia patients who do not need immediate mechanical ventilation. With HFNC oxygenation, correction of hypercapnia could be expected, especially in patients who do not have obstructive lung diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...