Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(23): 11318-11326, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38804270

ABSTRACT

The escalating global threat of infectious diseases, including monkeypox virus (MPXV), necessitates advancements in point-of-care diagnostics, moving beyond the constraints of conventional methods tethered to centralized laboratories. Here, we introduce multiple CRISPR RNA (crRNA)-based biosensors that can directly detect MPXV within 35 minutes without pre-amplification, leveraging the enhanced sensitivity and antifouling attributes of the BSA-based nanocomposite. Multiple crRNAs, strategically targeting diverse regions of the F3L gene of MPXV, are designed and combined to amplify Cas12a activation and its collateral cleavage of reporter probes. Notably, our electrochemical sensors exhibit the detection limit of 669 fM F3L gene without amplification, which is approximately a 15-fold improvement compared to fluorescence detection. This sensor also shows negligible changes in peak current after exposure to complex biological fluids, such as whole blood and serum, maintaining its sensitivity at 682 fM. This sensitivity is nearly identical to the conditions when only the F3L gene was present in PBS. In summary, our CRISPR-based electrochemical biosensors can be utilized as a high-performance diagnostic tool in resource-limited settings, representing a transformative leap forward in point-of-care testing. Beyond infectious diseases, the implications of this technology extend to various molecular diagnostics, establishing itself as a rapid, accurate, and versatile platform for detection of target analytes.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Electrochemical Techniques , Nanocomposites , Biosensing Techniques/methods , Nanocomposites/chemistry , Electrochemical Techniques/methods , Humans , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Limit of Detection , Bacterial Proteins/genetics , Animals , Endodeoxyribonucleases/metabolism , Biofouling/prevention & control
2.
Biosens Bioelectron ; 259: 116375, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38749283

ABSTRACT

Since the outbreak of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) at the end of 2019, the spread of the virus has posed a significant threat to public health and the global economy. This work proposed a one-step, dual-structure-switching aptamer-mediated signal amplification cascade for rapid and sensitive detection of the SARS-CoV-2 nucleocapsid protein. This system consisted of two DNA aptamers with structure-switching functionality and fuel DNA, where a cascade of strand hybridization and displacement triggered fluorescence generation and signal amplification. This aptamer-based amplification cascade required neither an amplification stage using enzymes nor pre-processing steps such as washing, viral isolation, and gene extraction. The assay could distinguish SARS-CoV-2 from other respiratory viruses and detect up to 1.0 PFU/assay of SARS-CoV-2 within 30 min at room temperature. In 35 nasopharyngeal clinical samples, the assay accurately assessed 25 positive and 10 negative clinical swab samples, which were confirmed using quantitative polymerase chain reaction. The strategy reported herein can help detect newly emerging pathogens and biomarkers of various diseases in liquid samples. In addition, the developed detection system consisting of only DNA and fluorophores can be widely integrated into liquid biopsy platforms for disease diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Nucleic Acid Amplification Techniques , SARS-CoV-2 , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Humans , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , COVID-19/virology , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Coronavirus Nucleocapsid Proteins/genetics , Phosphoproteins/chemistry , Limit of Detection , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/instrumentation
3.
Small ; 20(35): e2308317, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38564785

ABSTRACT

Proactive management of foodborne illness requires routine surveillance of foodborne pathogens, which requires developing simple, rapid, and sensitive detection methods. Here, a strategy is presented that enables the detection of multiple foodborne bacteria using a 3D nanostructure swab and deep learning-based Raman signal classification. The nanostructure swab efficiently captures foodborne pathogens, and the portable Raman instrument directly collects the Raman signals of captured bacteria. a deep learning algorithm has been demonstrated, 1D convolutional neural network with binary labeling, achieves superior performance in classifying individual bacterial species. This methodology has been extended to mixed bacterial populations, maintaining accuracy close to 100%. In addition, the gradient-weighted class activation mapping method is used to provide an investigation of the Raman bands for foodborne pathogens. For practical application, blind tests are conducted on contaminated kitchen utensils and foods. The proposed technique is validated by the successful detection of bacterial species from the contaminated surfaces. The use of a 3D nanostructure swab, portable Raman device, and deep learning-based classification provides a powerful tool for rapid identification (≈5 min) of foodborne bacterial species. The detection strategy shows significant potential for reliable food safety monitoring, making a meaningful contribution to public health and the food industry.


Subject(s)
Deep Learning , Food Microbiology , Nanostructures , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Nanostructures/chemistry , Foodborne Diseases/microbiology , Bacteria/isolation & purification
5.
Biosens Bioelectron ; 253: 116147, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452568

ABSTRACT

We herein present a multifunctional self-priming hairpin probe-based isothermal amplification, termed MSH, enabling one-pot detection of target nucleic acids. The sophisticatedly designed multifunctional self-priming hairpin (MSH) probe recognizes the target and rearranges to prime itself, triggering the amplification reaction powered by the continuously repeated extension, nicking, and target recycling. As a consequence, a large number of double-stranded DNA (dsDNA) amplicons are produced that could be monitored in real-time using a dsDNA-intercalating dye. Based on this unique design approach, the nucleocapsid (N) and the open reading frame 1 ab (ORF1ab) genes of SARS-CoV-2 were successfully detected down to 1.664 fM and 0.770 fM, respectively. The practical applicability of our method was validated by accurately diagnosing 60 clinical samples with 93.33% sensitivity and 96.67% specificity. This isothermal one-pot MSH technique holds great promise as a point-of-care testing protocol for the reliable detection of a wide spectrum of pathogens, particularly in resource-limited settings.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , Humans , COVID-19/diagnosis , COVID-19 Testing , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Biosensing Techniques/methods , Sensitivity and Specificity
6.
Nat Commun ; 15(1): 1366, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355558

ABSTRACT

Efficient pathogen enrichment and nucleic acid isolation are critical for accurate and sensitive diagnosis of infectious diseases, especially those with low pathogen levels. Our study introduces a biporous silica nanofilms-embedded sample preparation chip for pathogen and nucleic acid enrichment/isolation. This chip features unique biporous nanostructures comprising large and small pore layers. Computational simulations confirm that these nanostructures enhance the surface area and promote the formation of nanovortex, resulting in improved capture efficiency. Notably, the chip demonstrates a 100-fold lower limit of detection compared to conventional methods used for nucleic acid detection. Clinical validations using patient samples corroborate the superior sensitivity of the chip when combined with the luminescence resonance energy transfer assay. The enhanced sample preparation efficiency of the chip, along with the facile and straightforward synthesis of the biporous nanostructures, offers a promising solution for polymer chain reaction-free detection of nucleic acids.


Subject(s)
Nanostructures , Nucleic Acids , Humans , Microfluidics , Silicon Dioxide , Oligonucleotide Array Sequence Analysis/methods , Nucleic Acid Amplification Techniques
7.
Biosens Bioelectron ; 251: 116102, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38350240

ABSTRACT

We present a label-free colorimetric CRISPR/Cas-based method enabling affordable molecular diagnostics for SARS-CoV-2. This technique utilizes 3,3'-diethylthiadicarbocyanine iodide (DISC2(5)) which exhibits a distinct color transition from purple to blue when it forms dimers by inserting into the duplex of the thymidine adenine (TA) repeat sequence. Loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) was used to amplify target samples, which were subsequently subjected to the CRISPR/Cas12a system. The target amplicons would activate Cas12a to degrade nearby TA repeat sequences, preserving DISC2(5) in its free form to display purple as opposed to blue in the absence of the target. Based on this design approach, SARS-CoV-2 RNA was colorimetrically detected very sensitively down to 2 copies/µL, and delta and omicron variants of SARS-CoV-2 were also successfully identified. The practical diagnostic utility of this method was further validated by reliably identifying 179 clinical samples including 20 variant samples with 100% clinical sensitivity and specificity. This technique has the potential to become a promising CRISPR-based colorimetric platform for molecular diagnostics of a wide range of target pathogens.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , Colorimetry , RNA, Viral , Adenine , Nucleic Acid Amplification Techniques
8.
Nat Commun ; 15(1): 711, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331881

ABSTRACT

Development of coating technologies for electrochemical sensors that consistently exhibit antifouling activities in diverse and complex biological environments over extended time is vital for effective medical devices and diagnostics. Here, we describe a micrometer-thick, porous nanocomposite coating with both antifouling and electroconducting properties that enhances the sensitivity of electrochemical sensors. Nozzle printing of oil-in-water emulsion is used to create a 1 micrometer thick coating composed of cross-linked albumin with interconnected pores and gold nanowires. The layer resists biofouling and maintains rapid electron transfer kinetics for over one month when exposed directly to complex biological fluids, including serum and nasopharyngeal secretions. Compared to a thinner (nanometer thick) antifouling coating made with drop casting or a spin coating of the same thickness, the thick porous nanocomposite sensor exhibits sensitivities that are enhanced by 3.75- to 17-fold when three different target biomolecules are tested. As a result, emulsion-coated, multiplexed electrochemical sensors can carry out simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid, antigen, and host antibody in clinical specimens with high sensitivity and specificity. This thick porous emulsion coating technology holds promise in addressing hurdles currently restricting the application of electrochemical sensors for point-of-care diagnostics, implantable devices, and other healthcare monitoring systems.


Subject(s)
Biofouling , Biosensing Techniques , Nanocomposites , Porosity , Emulsions , Antibodies , Electrochemical Techniques
9.
Food Chem ; 438: 138043, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37992606

ABSTRACT

Listeria monocytogenes, a severe foodborne pathogen causing severe diseases underscores the necessity for the development of a detection system with high specificity, sensitivity and utility. Herein, the PoreGlow system, based on split green fluorescent protein (GFP), was developed and assessed for the fast and accurate detection of L. monocytogenes. Split GFP-encapsulated liposomes were optimized for targeted analysis. The system utilizes listeriolysin O (LLO), a toxin produced by L. monocytogenes that enlarges the pores split GFP-encapsulated liposomes, to detect L. monocytogenes by measuring the fluorescent signal generated when the encapsulated GFP is released and reacted with the externally added fragment of the split GFP. The system exhibited a limit of detection of 0.17 µg/ml for LLO toxin and 10 CFU/mL for L. monocytogenes with high sensitivity and specificity and no cross-reactivity with other bacteria. The PoreGlow system is practical, rapid, and does not require sample pre-treatment, making it a promising tool for the early detection of L. monocytogenes in food products, which is crucial for preventing outbreaks and protecting public health.


Subject(s)
Listeria monocytogenes , Listeriosis , Humans , Listeria monocytogenes/genetics , Listeriosis/metabolism , Listeriosis/microbiology , Green Fluorescent Proteins/genetics , Liposomes/metabolism , Hemolysin Proteins/genetics
10.
Nat Commun ; 14(1): 8033, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052830

ABSTRACT

Endonucleases have recently widely used in molecular diagnostics. Here, we report a strategy to exploit the properties of Argonaute (Ago) proteins for molecular diagnostics by introducing an artificial nucleic acid circuit with Ago protein (ANCA) method. The ANCA is designed to perform a continuous autocatalytic reaction through cross-catalytic cleavage of the Ago protein, enabling one-step, amplification-free, and isothermal DNA detection. Using the ANCA method, carbapenemase-producing Klebsiella pneumoniae (CPKP) are successfully detected without DNA extraction and amplification steps. In addition, we demonstrate the detection of carbapenem-resistant bacteria in human urine and blood samples using the method. We also demonstrate the direct identification of CPKP swabbed from surfaces using the ANCA method in conjunction with a three-dimensional nanopillar structure. Finally, the ANCA method is applied to detect CPKP in rectal swab specimens from infected patients, achieving sensitivity and specificity of 100% and 100%, respectively. The developed method can contribute to simple, rapid and accurate diagnosis of CPKP, which can help prevent nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Nucleic Acids , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Antibodies, Antineutrophil Cytoplasmic/metabolism , Nucleic Acids/metabolism , Bacteria/genetics , DNA/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests
11.
BMC Infect Dis ; 23(1): 732, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891503

ABSTRACT

OBJECTIVE: We aimed to compare the adaptive immune response in individuals with or without prior SARS-CoV-2 infections following the administration of mRNA-based COVID-19 vaccines. METHODS: A total of 54 participants with ages ranging from 37 to 56 years old, consisting of 23 individuals without a history of SARS-CoV-2 infection (uninfected group) and 31 individuals with prior infection of SARS-CoV-2 (infected group) who have received two doses of mRNA SARS-CoV-2 vaccines were enrolled in this study. We measured the IFN-γ level upon administration of BNT162b2 (PF) or mRNA-1273 (MO) by QuantiFERON SARS-CoV-2. The production of neutralizing antibodies was evaluated by a surrogate virus neutralization assay, and the neutralizing capacity was assessed by a plaque reduction neutralization test (PRNT50). The immune response was compared between the two groups. RESULTS: A significantly higher level of IFN-γ (p < 0.001) and neutralization antibodies (p < 0.001) were observed in the infected group than those in the uninfected group following the first administration of vaccines. The infected group demonstrated a significantly higher PRNT50 titer than the uninfected group against the Wuhan strain (p < 0.0001). Still, the two groups were not significantly different against Delta (p = 0.07) and Omicron (p = 0.14) variants. Following the second vaccine dose, T- and B-cell levels were not significantly increased in the infected group. CONCLUSION: A single dose of mRNA-based COVID-19 vaccines would boost immune responses in individuals who had previously contracted SARS-CoV-2.


Subject(s)
COVID-19 , Humans , Adult , Middle Aged , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , BNT162 Vaccine , Vaccination , Antibodies, Neutralizing , Antibodies, Viral
12.
Biosens Bioelectron ; 241: 115700, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37757509

ABSTRACT

The simultaneous infection with a tripledemic-simultaneous infection with influenza A pH1N1 virus (Flu), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and respiratory syncytial virus (RSV)-necessitates the development of accurate and fast multiplex diagnostic tests. The coronavirus disease 2019 (COVID-19) pandemic has emphasized the importance of virus detection. Field-effect transistor (FET)-based immuno-biosensors have a short detection time and do not require labeling or polymerase chain reaction. This study demonstrates the rapid, sensitive detection of influenza A pH1N1, SARS-CoV-2, and RSV using a multiplex immunosensor based on a dual-gate oxide semiconductor thin-film transistor (TFT), a type of FET. The dual-gate oxide TFT was modified by adjusting both top and bottom gate insulators to improve capacitive coupling to approximately 120-fold amplification, exhibiting a high pH sensitivity of about 10 V/pH. The dual-gate oxide TFT-based immunosensor detected the target proteins (hemagglutinin (HA) protein of Flu, spike 1 (S1) protein of SARS-CoV-2, and fusion protein of RSV) of each virus, with a limit of detection of approximately 1 fg/mL. Cultured viruses in phosphate-buffered saline or artificial saliva and clinical nasopharynx samples were detected in 1-µL sample volumes within 60 s. This promising diagnosis could be potentially as point-of-care tests to facilitate a prompt response to future pandemics with high sensitivity and multiplexed detection without pretreatment.

13.
Nano Converg ; 10(1): 45, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715925

ABSTRACT

The current standard method of diagnosing coronavirus disease 2019 (COVID-19) involves uncomfortable and invasive nasopharyngeal (NP) sampling using cotton swabs (CS), which can be unsuitable for self-testing. Although mid-turbinate sampling is an alternative, it has a lower diagnostic yield than NP sampling. Nasal wash (NW) has a similar diagnostic yield to NP sampling, but is cumbersome to perform. In this study, we introduce a 3D printed fluidic swab (3DPFS) that enables easy NW sampling for COVID-19 testing with improved diagnostic yield. The 3DPFS comprises a swab head, microchannel, and socket that can be connected to a syringe containing 250 µL of NW solution. The 3DPFS efficiently collects nasal fluid from the surface of the nasal cavity, resulting in higher sensitivity than CS for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This was confirmed by both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and lateral flow assays (LFA) in virus-spiked nasal samples and clinical samples. Additionally, users reported greater comfort when using the 3DPFS compared to CS. These findings suggest that the 3DPFS can improve the performance of COVID-19 testing by facilitating efficient and less painful nasal sample collection.

14.
Viruses ; 15(8)2023 08 17.
Article in English | MEDLINE | ID: mdl-37632098

ABSTRACT

In this study, we evaluated the effectiveness of the bivalent mRNA COVID-19 vaccines against the Omicron variant in individuals with or without prior SARS-CoV-2 infection history. We assessed the SARS-CoV-2-specific neutralizing antibody in serum samples by surrogate virus neutralizing assay (sVNT) and determined the serum's neutralizing capacity against the Omicron BA.5 by a plaque reduction neutralizing test (PRNT50). The results of the sVNT assay demonstrate a higher percentage of inhibition of the serum samples from the infected group than from the uninfected group (p = 0.01) before the bivalent vaccination but a similarly high percentage of inhibition after the vaccination. Furthermore, the results of the PRNT50 assay demonstrate a higher neutralizing capacity of the serum samples against Omicron BA.5 in the infected group compared to the uninfected group, both before and after the bivalent vaccine administration (p < 0.01 and p = 0.02 for samples collected before and after the bivalent vaccination, respectively). A higher neutralizing capacity of the serum samples against BA.5 following bivalent vaccination compared to those before vaccination suggests the efficacy of bivalent mRNA COVID-19 vaccines in triggering an immune response against the Omicron variant, particularly BA.5, regardless of infection history.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Antibodies, Viral , RNA, Messenger
15.
Mater Horiz ; 10(10): 4571-4580, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37581348

ABSTRACT

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid, user-friendly nucleic acid testing that involves simple but efficient RNA extraction. Here, we present a charge-shifting polyplex as an RNA extraction carrier for advanced diagnosis of infectious viral diseases. The polyplex comprises poly(2-(dimethylamino) ethyl acrylate) (pDMAEA) electrostatically conjugated with RNA. The pDMAEA film can rapidly dissolve in the viral RNA solution, promoting immediate binding with RNA to form the polyplex, which enables the efficient capture of a substantial quantity of RNA. Subsequently, the captured RNA can be readily released by the quick hydrolysis of pDMAEA at the onset of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), streamlining the entire process from RNA extraction to analysis. The developed method requires only 5 min of centrifugation and enables the detection of RNA in a one-pot setup. Moreover, the proposed method is fully compatible with high-speed qRT-PCR kits and can identify clinical samples within 1 h including the entire extraction to detection procedure. Indeed, the method successfully detected influenza viruses, SARS-CoV-2, and their delta and omicron variants in 260 clinical samples with a sensitivity of 99.4% and specificity of 98.9%. This rapid, user-friendly polyplex-based approach represents a significant breakthrough in molecular diagnostics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/analysis , COVID-19/diagnosis , COVID-19 Testing
16.
J Hazard Mater ; 460: 132398, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37639787

ABSTRACT

Over the past few years, infections caused by airborne pathogens have spread worldwide, infecting several people and becoming an increasingly severe threat to public health. Therefore, there is an urgent need for developing airborne pathogen monitoring technology for use in confined environments to enable epidemic prevention. In this study, we designed a colorimetry-based bacterial detection platform that uses a clustered regularly interspaced short palindromic repeat-associated protein 12a system to amplify signals and a urease enzyme to induce color changes. Furthermore, we have developed a smartphone application that can distinguish colors under different illumination conditions based on the HSV model and detect three types of disease-causing bacteria. Even synthetic oligomers of a few picomoles of concentration and genomic DNA of airborne bacteria smaller than several nanograms can be detected with the naked eye and using color analysis systems. Furthermore, in the air capture model system, the bacterial sample generated approximately a 2-fold signal difference compared with that in the control group. This colorimetric detection method can be widely applied for public safety because it is easy to use and does not require complex equipment.


Subject(s)
Colorimetry , Smartphone , Humans , Bacteria/genetics , Models, Biological , Public Health
17.
Biosens Bioelectron ; 237: 115522, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37437457

ABSTRACT

The global pandemic resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its emerging variants highlights the need for convenient and accurate detection protocols to facilitate timely prevention and management of the disease. Herein, we propose a new self-priming hairpin-mediated isothermal amplification (SIAM) protocol enabling one-pot and ultrasensitive identification of SARS-CoV-2 in a multiplexed way. This approach works by targeting a specific RNA sequence with a self-priming hairpin (SP) probe and promoting continuously repeated extension and nicking reactions to produce numerous trigger molecules, which could specifically bind to molecular beacons (MBs) and produce fluorescent signals. Under an isothermal condition of 37 °C, this technique allowed for the simultaneous identification of the spike (S) and nucleocapsid (N) genes of SARS-CoV-2 down to single copy/µL levels. We further validated the practical diagnostic capabilities of the SIAM method by accurately testing 20 clinical samples with 100% sensitivity and specificity. The SIAM method has a lot of potential to be a reliable nucleic acid testing protocol to identify infections caused by a wide range of pathogens.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , COVID-19 Testing , Molecular Diagnostic Techniques/methods , Biosensing Techniques/methods , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics
18.
Nano Converg ; 10(1): 25, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37243716

ABSTRACT

Sensitive and accurate capture, enrichment, and identification of drug-resistant bacteria on human skin are important for early-stage diagnosis and treatment of patients. Herein, we constructed a three-dimensional hierarchically structured polyaniline nanoweb (3D HPN) to capture, enrich, and detect drug-resistant bacteria on-site by rubbing infected skins. These unique hierarchical nanostructures enhance bacteria capture efficiency and help severely deform the surface of the bacteria entrapped on them. Therefore, 3D HPN significantly contributes to the effective and reliable recovery of drug-resistant bacteria from the infected skin and the prevention of potential secondary infection. The recovered bacteria were successfully identified by subsequent real-time polymerase chain reaction (PCR) analysis after the lysis process. The molecular analysis results based on a real-time PCR exhibit excellent sensitivity to detecting target bacteria of concentrations ranging from 102 to 107 CFU/mL without any fluorescent signal interruption. To confirm the field applicability of 3D HPN, it was tested with a drug-resistant model consisting of micropig skin similar to human skin and Klebsiella pneumoniae carbapenemase-producing carbapenem-resistant Enterobacteriaceae (KPC-CRE). The results show that the detection sensitivity of this assay is 102 CFU/mL. Therefore, 3D HPN can be extended to on-site pathogen detection systems, along with rapid molecular diagnostics through a simple method, to recover KPC-CRE from the skin.

19.
Lab Chip ; 23(10): 2389-2398, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37083004

ABSTRACT

Since the outbreak of coronavirus 2019 (COVID-19), detection technologies have been attracting a great deal of attention in molecular diagnosis applications. In particular, the droplet digital PCR (ddPCR) has become a promising tool as it offers absolute quantification of target nucleic acids with high specificity and sensitivity. In recent years, the combination of the isothermal amplification strategies has made ddPCR a popular method for on-site testing by enabling amplification at a constant temperature. However, the current isothermal ddPCR assays are still challenging due to inherent non-specific amplification. In this paper, we present a multiplexed droplet digital recombinase polymerase amplification (MddRPA) with precise initiation of the reaction. First, the reaction temperature and dynamic range of reverse transcription (RT) and RPA were characterized by real-time monitoring of fluorescence intensities. Using a droplet-based microfluidic chip, the master mix and the initiator were fractionated and rapidly mixed within well-confined droplets. Due to the high heat transfer and mass transfer of the droplets, the precise initiation of the amplification was enabled and the entire assay could be conducted within 30 min. The concentrations of target RNA in the range from 5 copies per µL to 2500 copies per µL could be detected with high linearity (R2 > 0.999). Furthermore, the multiplexed detection of three types of human coronaviruses was successfully demonstrated with high specificity (>96%). Finally, we compared the performance of the assay with a commercial RT-qPCR system using COVID-19 clinical samples. The MddRPA assay showed a 100% concordance with the RT-qPCR results, indicating its reliability and accuracy in detecting SARS-CoV-2 nucleic acids in clinical samples. Therefore, our MddRPA assay with rapid detection, precise quantification, and multiplexing capability would be an interesting method for molecular diagnosis of viral infections.


Subject(s)
COVID-19 , Recombinases , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Reproducibility of Results , RNA , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , RNA, Viral/analysis
20.
Sens Actuators B Chem ; 382: 133521, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36818494

ABSTRACT

The sensitive detection of viruses is key to preventing the spread of infectious diseases. In this study, we develop a silica-encapsulated Au core-satellite (CS@SiO2) nanotag, which produces a strong and reproducible surface-enhanced Raman scattering (SERS) signal. The combination of SERS from the CS@SiO2 nanotags with enzyme-linked immunosorbent assay (ELISA) achieves a highly sensitive detection of SARS-CoV-2. The CS@SiO2 nanotag is constructed by assembling 32 nm Au nanoparticles (AuNPs) on a 75 nm AuNP. Then the core-satellite particles are encapsulated with SiO2 for facile surface modification and stability. The SERS-ELISA technique using the CS@SiO2 nanotags provides a great sensitivity, yielding a detection limit of 8.81 PFU mL-1, which is 10 times better than conventional ELISA and 100 times better than lateral flow assay strip method. SERS-ELISA is applied to 30 SARS-CoV-2 clinical samples and achieved 100% and 55% sensitivities for 15 and 9 positive samples with cycle thresholds < 30 and > 30, respectively. This new CS@SiO2-SERS-ELISA method is an innovative technique that can significantly reduce the false-negative diagnostic rate for SARS-CoV-2 and thereby contribute to overcoming the current pandemic crisis.

SELECTION OF CITATIONS
SEARCH DETAIL