Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35056211

ABSTRACT

To meet the high radiation challenge for detectors in future high-energy physics, a novel 3D 4H-SiC detector was investigated. Three-dimensional 4H-SiC detectors could potentially operate in a harsh radiation and room-temperature environment because of its high thermal conductivity and high atomic displacement threshold energy. Its 3D structure, which decouples the thickness and the distance between electrodes, further improves the timing performance and the radiation hardness of the detector. We developed a simulation software-RASER (RAdiation SEmiconductoR)-to simulate the time resolution of planar and 3D 4H-SiC detectors with different parameters and structures, and the reliability of the software was verified by comparing the simulated and measured time-resolution results of the same detector. The rough time resolution of the 3D 4H-SiC detector was estimated, and the simulation parameters could be used as guideline to 3D 4H-SiC detector design and optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...