Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Sci Transl Med ; 16(752): eadl5931, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896605

ABSTRACT

Clinical treatment of acute myeloid leukemia (AML) largely relies on intensive chemotherapy. However, the application of chemotherapy is often hindered by cardiotoxicity. Patient sequence data revealed that angiotensin II receptor type 1 (AGTR1) is a shared target between AML and cardiovascular disease (CVD). We found that inhibiting AGTR1 sensitized AML to chemotherapy and protected the heart against chemotherapy-induced cardiotoxicity in a human AML cell-transplanted mouse model. These effects were regulated by the AGTR1-Notch1 axis in AML cells and cardiomyocytes from mice. In mouse cardiomyocytes, AGTR1 was hyperactivated by AML and chemotherapy. AML leukemogenesis increased the expression of the angiotensin-converting enzyme and led to increased production of angiotensin II, the ligand of AGTR1, in an MLL-AF9-driven AML mouse model. In this model, the AGTR1-Notch1 axis regulated a variety of genes involved with cell stemness and chemotherapy resistance. AML cell stemness was reduced after Agtr1a deletion in the mouse AML cell transplant model. Mechanistically, Agtr1a deletion decreased γ-secretase formation, which is required for transmembrane Notch1 cleavage and release of the Notch1 intracellular domain into the nucleus. Using multiomics, we identified AGTR1-Notch1 signaling downstream genes and found decreased binding between these gene sequences with Notch1 and chromatin enhancers, as well as increased binding with silencers. These findings describe an AML/CVD association that may be used to improve AML treatment.


Subject(s)
Cardiotoxicity , Disease Models, Animal , Leukemia, Myeloid, Acute , Receptor, Angiotensin, Type 1 , Receptor, Notch1 , Animals , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Humans , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Receptor, Notch1/metabolism , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Signal Transduction/drug effects , Cell Line, Tumor , Amyloid Precursor Protein Secretases/metabolism , Heart/drug effects
2.
Trends Cancer ; 10(4): 280-282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458943

ABSTRACT

Understanding the mechanisms underlying the generation and maintenance of leukemia stem cells (LSCs) is crucial for the development of effective therapies against T cell acute lymphoblastic leukemia (T-ALL). In a recent study, Rivera et al. discovered that elevated adenosine deaminase acting on RNA (ADAR)-1-mediated RNA editing is a distinguishing feature of T-ALL relapse, and that ADAR1 suppresses apoptosis triggered by the double-stranded (ds)RNA-sensing pathway.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , RNA, Double-Stranded/genetics , Stem Cells/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
3.
Nat Cell Biol ; 26(3): 464-477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321204

ABSTRACT

Leukaemia stem cells (LSCs) in acute myeloid leukaemia present a considerable treatment challenge due to their resistance to chemotherapy and immunosurveillance. The connection between these properties in LSCs remains poorly understood. Here we demonstrate that inhibition of tyrosine phosphatase SHP-1 in LSCs increases their glycolysis and oxidative phosphorylation, enhancing their sensitivity to chemotherapy and vulnerability to immunosurveillance. Mechanistically, SHP-1 inhibition leads to the upregulation of phosphofructokinase platelet (PFKP) through the AKT-ß-catenin pathway. The increase in PFKP elevates energy metabolic activities and, as a consequence, enhances the sensitivity of LSCs to chemotherapeutic agents. Moreover, the upregulation of PFKP promotes MYC degradation and, consequently, reduces the immune evasion abilities of LSCs. Overall, our study demonstrates that targeting SHP-1 disrupts the metabolic balance in LSCs, thereby increasing their vulnerability to chemotherapy and immunosurveillance. This approach offers a promising strategy to overcome LSC resistance in acute myeloid leukaemia.


Subject(s)
Leukemia, Myeloid, Acute , Metabolic Reprogramming , Humans , Monitoring, Immunologic , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Stem Cells , Neoplastic Stem Cells/metabolism
4.
J Neurosci ; 43(24): 4513-4524, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37160364

ABSTRACT

Corticotropin-releasing hormone (CRH) is a neuropeptide regulating neuroendocrine and autonomic function. CRH mRNA and protein levels in the hypothalamic paraventricular nucleus (PVN) are increased in primary hypertension. However, the role of CRH in elevated sympathetic outflow in primary hypertension remains unclear. CRHR1 proteins were distributed in retrogradely labeled PVN presympathetic neurons with an increased level in the PVN tissue in adult spontaneously hypertensive rats (SHRs) compared with age-matched male Wistar-Kyoto (WKY) rats. CRH induced a more significant increase in the firing rate of PVN-rostral ventrolateral medulla (RVLM) neurons and sympathoexcitatory response in SHRs than in WKY rats, an effect that was blocked by preapplication of NMDA receptors (NMDARs) antagonist AP5 and PSD-95 inhibitor, Tat-N-dimer. Blocking CRHRs with astressin or CRHR1 with NBI35965 significantly decreased the firing rate of PVN-RVLM output neurons and reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in SHRs but not in WKY, whereas blocking CRHR2 with antisauvagine-30 did not. Furthermore, Immunocytochemistry staining revealed that CRHR1 colocalized with NMDARs in PVN presympathetic neurons. Blocking CRHRs significantly decreased the NMDA currents in labeled PVN neurons. PSD-95-bound CRHR1 and PSD-95-bound GluN2A in the PVN were increased in SHRs. These data suggested that the upregulation of CRHR1 in the PVN is critically involved in the hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in primary hypertension.SIGNIFICANCE STATEMENT Our study found that corticotropin-releasing hormone receptor (CRHR)1 protein levels were increased in the paraventricular nucleus (PVN), and CRHR1 interacts with NMDA receptors (NMDARs) through postsynaptic density protein (PSD)-95 in the PVN neurons in primary hypertension. The increased CRHR1 and CRHR1-NMDAR-PSD-95 complex in the PVN contribute to the hyperactivity of the PVN presympathetic neurons and elevated sympathetic vasomotor tone in hypertension in SHRs. Thus, the antagonism of CRHR1 decreases sympathetic outflow and blood pressure in hypertension. These findings determine a novel role of CRHR1 in elevated sympathetic vasomotor tone in hypertension, which is useful for developing novel therapeutics targeting CRHR1 to treat elevated sympathetic outflow in primary hypertension. The CRHR1 receptor antagonists, which are used to treat health consequences resulting from chronic stress, are candidates to treat primary hypertension.


Subject(s)
Essential Hypertension , Hypertension , Receptors, N-Methyl-D-Aspartate , Animals , Male , Rats , Adrenocorticotropic Hormone , Corticotropin-Releasing Hormone/metabolism , Essential Hypertension/metabolism , Hypertension/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary Hormone-Releasing Hormones/metabolism , Pituitary Hormone-Releasing Hormones/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, N-Methyl-D-Aspartate/metabolism , Sympathetic Nervous System/physiology
5.
Cardiovasc Res ; 119(8): 1751-1762, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37041718

ABSTRACT

AIMS: Chronic stress is a well-known risk factor for the development of hypertension. However, the underlying mechanisms remain unclear. Corticotropin-releasing hormone (CRH) neurons in the central nucleus of the amygdala (CeA) are involved in the autonomic responses to chronic stress. Here, we determined the role of CeA-CRH neurons in chronic stress-induced hypertension. METHODS AND RESULTS: Borderline hypertensive rats (BHRs) and Wistar-Kyoto (WKY) rats were subjected to chronic unpredictable stress (CUS). Firing activity and M-currents of CeA-CRH neurons were assessed, and a CRH-Cre-directed chemogenetic approach was used to suppress CeA-CRH neurons. CUS induced a sustained elevation of arterial blood pressure (ABP) and heart rate (HR) in BHRs, while in WKY rats, CUS-induced increases in ABP and HR quickly returned to baseline levels after CUS ended. CeA-CRH neurons displayed significantly higher firing activities in CUS-treated BHRs than unstressed BHRs. Selectively suppressing CeA-CRH neurons by chemogenetic approach attenuated CUS-induced hypertension and decreased elevated sympathetic outflow in CUS-treated BHRs. Also, CUS significantly decreased protein and mRNA levels of Kv7.2 and Kv7.3 channels in the CeA of BHRs. M-currents in CeA-CRH neurons were significantly decreased in CUS-treated BHRs compared with unstressed BHRs. Blocking Kv7 channel with its blocker XE-991 increased the excitability of CeA-CRH neurons in unstressed BHRs but not in CUS-treated BHRs. Microinjection of XE-991 into the CeA increased sympathetic outflow and ABP in unstressed BHRs but not in CUS-treated BHRs. CONCLUSIONS: CeA-CRH neurons are required for chronic stress-induced sustained hypertension. The hyperactivity of CeA-CRH neurons may be due to impaired Kv7 channel activity, which represents a new mechanism involved in chronic stress-induced hypertension.


Subject(s)
Central Amygdaloid Nucleus , Hypertension , Rats , Animals , Corticotropin-Releasing Hormone/metabolism , Central Amygdaloid Nucleus/metabolism , Rats, Inbred WKY , Hypertension/metabolism , Neurons/metabolism
6.
Cell Rep ; 42(2): 112105, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36807138

ABSTRACT

Leukemic-stem-cell-specific targeting may improve the survival of patients with acute myeloid leukemia (AML) by avoiding the ablative effects of standard regimens on normal hematopoiesis. Herein, we perform an unbiased screening of compounds targeting cell surface proteins and identify clinically used DPP4 inhibitors as strong suppressors of AML development in both murine AML models and primary human AML cells xenograft model. We find in retrovirus-induced AML mouse models that DPP4-deficient AML cell-transplanted mice exhibit delay and reversal of AML development, whereas deletion of DPP4 has no significant effect on normal hematopoiesis. DPP4 activates and sustains survival of AML stem cells that are critical for AML development in both human and animal models via binding with Src kinase and activation of nuclear factor κB (NF-κB) signaling. Thus, inhibition of DPP4 is a potential therapeutic strategy against AML development through suppression of survival and stemness of AML cells.


Subject(s)
Dipeptidyl Peptidase 4 , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Dipeptidyl Peptidase 4/metabolism , Disease Models, Animal , Leukemia, Myeloid, Acute/metabolism , Signal Transduction , Stem Cells/metabolism
7.
Arterioscler Thromb Vasc Biol ; 43(1): 92-108, 2023 01.
Article in English | MEDLINE | ID: mdl-36412197

ABSTRACT

BACKGROUND: Hematopoietic stem cell (HSC) therapy has shown promise for tissue regeneration after ischemia. Therefore, there is a need to understand mechanisms underlying endogenous HSCs activation in response to ischemic stress and coordination of angiogenesis and repair. SHP-1 plays important roles in HSC quiescence and differentiation by regulation of TGF-ß1 signaling. TGF-ß1 promotes angiogenesis by stimulating stem cells to secrete growth factors to initiate the formation of blood vessels and later aid in their maturation. We propose that SHP-1 responds to ischemia stress in HSC and progenitor cells (HSPC) via regulation of TGF-ß1. METHODS: A mouse hind limb ischemia model was used. Local blood perfusion in the limbs was determined using laser doppler perfusion imaging. The number of positive blood vessels per square millimeter, as well as blood vessel diameter (µm) and area (µm2), were calculated. Hematopoietic cells were analyzed using flow cytometry. The bone marrow transplantation assay was performed to measure HSC reconstitution. RESULTS: After femoral artery ligation, TGF-ß1 was initially decreased in the bone marrow by day 3 of ischemia, followed by an increase on day 7. This pattern was opposite to that in the peripheral blood, which is concordant with the response of HSC to ischemic stress. In contrast, SHP-1 deficiency in HSC is associated with irreversible activation of HSPCs in the bone marrow and increased circulating HSPCs in peripheral blood following limb ischemia. In addition, there was augmented auto-induction of TGF-ß1 and sustained inactivation of SHP-1-Smad2 signaling, which impacted TGF-ß1 expression in HSPCs in circulation. Importantly, restoration of normal T GF-ß1 oscillations helped in the recovery of limb repair and function. CONCLUSIONS: HSPC-SHP-1-mediated regulation of TGF-ß1 in both bone marrow and peripheral blood is required for a normal response to ischemic stress.


Subject(s)
Hematopoietic Stem Cells , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Hematopoietic Stem Cells/metabolism , Ischemia , Lower Extremity
8.
Blood ; 140(15): 1686-1701, 2022 10 13.
Article in English | MEDLINE | ID: mdl-35881840

ABSTRACT

Hematopoietic stem cells (HSCs) have reduced capacities to properly maintain and replenish the hematopoietic system during myelosuppressive injury or aging. Expanding and rejuvenating HSCs for therapeutic purposes has been a long-sought goal with limited progress. Here, we show that the enzyme Sphk2 (sphingosine kinase 2), which generates the lipid metabolite sphingosine-1-phosphate, is highly expressed in HSCs. The deletion of Sphk2 markedly promotes self-renewal and increases the regenerative potential of HSCs. More importantly, Sphk2 deletion globally preserves the young HSC gene expression pattern, improves the function, and sustains the multilineage potential of HSCs during aging. Mechanistically, Sphk2 interacts with prolyl hydroxylase 2 and the Von Hippel-Lindau protein to facilitate HIF1α ubiquitination in the nucleus independent of the Sphk2 catalytic activity. Deletion of Sphk2 increases hypoxic responses by stabilizing the HIF1α protein to upregulate PDK3, a glycolysis checkpoint protein for HSC quiescence, which subsequently enhances the function of HSCs by improving their metabolic fitness; specifically, it enhances anaerobic glycolysis but suppresses mitochondrial oxidative phosphorylation and generation of reactive oxygen species. Overall, targeting Sphk2 to enhance the metabolic fitness of HSCs is a promising strategy to expand and rejuvenate functional HSCs.


Subject(s)
Hematopoietic Stem Cells , Sphingosine , Glycolysis/genetics , Hematopoietic Stem Cells/metabolism , Phosphotransferases (Alcohol Group Acceptor) , Prolyl Hydroxylases/metabolism , Reactive Oxygen Species/metabolism
9.
J Neurochem ; 161(6): 478-491, 2022 06.
Article in English | MEDLINE | ID: mdl-35583089

ABSTRACT

Glutamate N-methyl-d-aspartate (NMDA) receptors (NMDARs) and Kv7/M channels are importantly involved in regulating neuronal activity involved in various physiological and pathological functions. Corticotropin-releasing hormone (CRH)-expressing neurons in the central nucleus of the amygdala (CeA) critically mediate autonomic response during stress. However, the interaction between NMDA receptors and Kv7/M channels in the CRHCeA neurons remains unclear. In this study, we identified rat CRHCeA neurons through the expression of an AAV viral vector-mediated enhanced green fluorescent protein (eGFP) driven by the rat CRH promoter. M-currents carried by Kv7/M channels were recorded using the whole-cell patch-clamp approach in eGFP-tagged CRHCeA neurons in brain slices. Acute exposure to NMDA significantly reduced M-currents recorded from the CRHCeA neurons. NMDA-induced suppression of M-currents was eliminated by chelating intracellular Ca2+ , supplying phosphatidylinositol 4,5-bisphosphate (PIP2) intracellularly, or blocking phosphoinositide3-kinase (PI3K). In contrast, inhibiting protein kinase C (PKC) or calmodulin did not alter NMDA-induced suppression of M-currents. Sustained exposure of NMDA decreased Kv7.3 membrane protein levels and suppressed M-currents, while the Kv7.2 expression levels remained unaltered. Pre-treatment of brain slices with PKC inhibitors alleviated the decreases in Kv7.3 and reduction of M-currents in CRHCeA neurons induced by NMDA. PKC inhibitors did not alter Kv7.2 and Kv7.3 membrane protein levels and M-currents in CRHCeA neurons. These data suggest that transient activation of NMDARs suppresses M-currents through the Ca2+ -dependent PI3K-PIP2 signaling pathway. In contrast, sustained activation of NMDARs reduces Kv7.3 protein expression and suppresses M-currents through a PKC-dependent pathway.


Subject(s)
Central Amygdaloid Nucleus , Corticotropin-Releasing Hormone , Animals , Corticotropin-Releasing Hormone/metabolism , N-Methylaspartate/pharmacology , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/physiology
10.
Cells ; 10(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34943884

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease associated with various alterations in T cell phenotype and function leading to an abnormal cell population, ultimately leading to immune exhaustion. However, restoration of T cell function allows for the execution of cytotoxic mechanisms against leukemic cells in AML patients. Therefore, long-term disease control, which requires multiple therapeutic approaches, includes those aimed at the re-establishment of cytotoxic T cell activity. AML treatments that harness the power of T lymphocytes against tumor cells have rapidly evolved over the last 3 to 5 years through various stages of preclinical and clinical development. These include tissue-infiltrated lymphocytes (TILs), bispecific antibodies, immune checkpoint inhibitors (ICIs), chimeric antigen receptor T (CAR-T) cell therapy, and tumor-specific T cell receptor gene-transduced T (TCR-T) cells. In this review, these T cell-based immunotherapies and the potential of TILs as a novel antileukemic therapy will be discussed.


Subject(s)
Immunotherapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , T-Lymphocytes/immunology , Animals , Clinical Trials as Topic , Humans , Immunotherapy, Adoptive , Models, Biological
11.
Front Cell Dev Biol ; 9: 730400, 2021.
Article in English | MEDLINE | ID: mdl-34490276

ABSTRACT

Protein tyrosine phosphatases (PTPs) are modulators of cellular functions such as differentiation, metabolism, migration, and survival. PTPs antagonize tyrosine kinases by removing phosphate moieties from molecular signaling residues, thus inhibiting signal transduction. Two PTPs, SHP-1 and SHP-2 (SH2 domain-containing phosphatases 1 and 2, respectively) and another inhibitory phosphatase, SH2 domain-containing inositol phosphatase (SHIP), are essential for cell function, which is reflected in the defective phenotype of mutant mice. Interestingly, SHP-1, SHP-2, and SHIP mutations are identified in many cases of human leukemia. However, the impact of these phosphatases and their mutations regarding the onset and progression of leukemia is controversial. The ambiguity of the role of these phosphatases imposes challenges on the development of targeting therapies for leukemia. This fundamental problem, confronted by the expanding investigational field of leukemia, will be addressed in this review, which will include a discussion of the molecular mechanisms of SHP-1, SHP-2, and SHIP in normal hematopoiesis and their role in leukemia. Clinical development of leukemic therapies achieved by targeting these phosphatases will be addressed as well.

12.
J Cell Immunol ; 3(3): 144-150, 2021.
Article in English | MEDLINE | ID: mdl-34263253

ABSTRACT

Ca2+/calmodulin (CaM) signaling is important for a wide range of cellular functions. It is not surprised the role of this signaling has been recognized in tumor progressions, such as proliferation, invasion, and migration. However, its role in leukemia has not been well appreciated. The multifunctional Ca2+/CaM-dependent protein kinases (CaMKs) are critical intermediates of this signaling and play key roles in cancer development. The most investigated CaMKs in leukemia, especially myeloid leukemia, are CaMKI, CaMKII, and CaMKIV. The function and mechanism of these kinases in leukemia development are summarized in this study.

13.
EBioMedicine ; 39: 145-158, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30528456

ABSTRACT

BACKGROUND: Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/ß-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear. METHODS: We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs). FINDINGS: We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/ß-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML. INTERPRETATION: By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/ß-catenin-dependent growth of LICs. Small molecules disrupting WNT/ß-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.


Subject(s)
Homeodomain Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Small Molecule Libraries/pharmacology , Wnt Signaling Pathway/drug effects , Animals , HEK293 Cells , HL-60 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Neoplasm Transplantation , Neoplastic Stem Cells/metabolism , Receptors, G-Protein-Coupled/genetics , THP-1 Cells , Transcription Factor 7-Like 2 Protein/metabolism
15.
J Exp Med ; 215(5): 1337-1347, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29669741

ABSTRACT

Cell cycle quiescence is critical for hematopoietic stem cell (HSC) maintenance. TGF-ß signaling in bone marrow niche has been identified in regulating HSC quiescence; however, the intrinsic regulatory mechanisms remain unclear. This study reports that Shp-1 knockout HSCs have attenuated quiescence and impaired long-term self-renewal. SHP-1-activated HSCs are surrounded by megakaryocytes, which regulate HSC quiescence by producing TGF-ß1. Mechanistically, SHP-1 interacts with the immunoreceptor tyrosine-based inhibition motif on TGF-ß receptor 1 and is critical for TGF-ß signaling activation in HSCs. Functionally, Shp-1 knockout HSCs do not respond to TGF-ß-enforced HSC quiescence regulation, both in vitro and in vivo. Therefore, we identify TGF-ß-SHP-1 as a novel intrinsic regulatory mechanism for HSC quiescence maintenance.


Subject(s)
Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Amino Acid Sequence , Animals , Cell Self Renewal , Mice, Inbred C57BL , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 6/chemistry , Receptors, Transforming Growth Factor beta/metabolism , Stem Cell Niche , Time Factors
16.
J Hematol Oncol ; 11(1): 30, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29482582

ABSTRACT

BACKGROUND: We recently identified the human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse ortholog-paired Ig-like receptor (PirB) as receptors for several angiopoietin-like proteins (Angptls). We also demonstrated that PirB is important for the development of acute myeloid leukemia (AML), but exactly how an inhibitory receptor such as PirB can support cancer development is intriguing. RESULTS: Here, we showed that the activation of Ca (2+)/calmodulin-dependent protein kinases (CAMKs) is coupled with PirB signaling in AML cells. High expression of CAMKs is associated with a poor overall survival probability in patients with AML. Knockdown of CAMKI or CAMKIV decreased human acute leukemia development in vitro and in vivo. Mouse AML cells that are defective in PirB signaling had decreased activation of CAMKs, and the forced expression of CAMK partially rescued the PirB-defective phenotype in the MLL-AF9 AML mouse model. The inhibition of CAMK kinase activity or deletion of CAMKIV significantly slowed AML development and decreased the AML stem cell activity. We also found that CAMKIV acts through the phosphorylation of one of its well-known target (CREB) in AML cells. CONCLUSION: CAMKs are essential for the growth of human and mouse AML. The inhibition of CAMK signaling may become an effective strategy for treating leukemia.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Leukemia, Myeloid, Acute/metabolism , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Humans , Leukemia, Myeloid, Acute/pathology , Mice, Inbred C57BL , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Receptors, Immunologic/metabolism , Signal Transduction
17.
Nat Med ; 23(1): 79-90, 2017 01.
Article in English | MEDLINE | ID: mdl-27941793

ABSTRACT

New therapeutic approaches are needed to treat leukemia effectively. Dietary restriction regimens, including fasting, have been considered for the prevention and treatment of certain solid tumor types. However, whether and how dietary restriction affects hematopoietic malignancies is unknown. Here we report that fasting alone robustly inhibits the initiation and reverses the leukemic progression of both B cell and T cell acute lymphoblastic leukemia (B-ALL and T-ALL, respectively), but not acute myeloid leukemia (AML), in mouse models of these tumors. Mechanistically, we found that attenuated leptin-receptor (LEPR) expression is essential for the development and maintenance of ALL, and that fasting inhibits ALL development by upregulation of LEPR and its downstream signaling through the protein PR/SET domain 1 (PRDM1). The expression of LEPR signaling-related genes correlated with the prognosis of pediatric patients with pre-B-ALL, and fasting effectively inhibited B-ALL growth in a human xenograft model. Our results indicate that the effects of fasting on tumor growth are cancer-type dependent, and they suggest new avenues for the development of treatment strategies for leukemia.


Subject(s)
Fasting/metabolism , Leukemia, Myeloid, Acute/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Leptin/metabolism , Transcription Factors/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Computer Simulation , Disease Models, Animal , Flow Cytometry , Humans , Mice , Mice, SCID , Neoplasm Transplantation , Positive Regulatory Domain I-Binding Factor 1 , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Real-Time Polymerase Chain Reaction , Receptors, Leptin/genetics , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
18.
Oncotarget ; 7(49): 80435-80449, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27741516

ABSTRACT

Metabolic shift toward aerobic glycolysis is a fundamental element contributing to the development and progression of clear cell renal cell carcinoma (ccRCC). We and others previously observed enhanced glycolysis and diminished tricarboxylic acid (TCA) cycle activity in ccRCC tissue. Here, by integrated gene expression and metabolomic analyses of 36 matched pairs of tumor and adjacent normal tissues, we showed that expression of Sentrin/SUMO-specific protease 1 (SENP1) is positively associated with glycolysis levels in ccRCC. Moreover, SENP1 knockdown in RCC4/VHL cells downregulated expression of key glycolytic enzymes under normoxic and hypoxic conditions and inhibited cell proliferation under hypoxic conditions, possibly due to ineffective deSUMOylation and stablization of Hif-1α related to the SENP-1 deficiency. Finally, SENP1 expression correlated positively with tumor pathological grade and was an indicator of poor overall survival and advanced tumor progression in ccRCC. Altered VHL gene function is found in 60-90% ccRCC cases of ccRCC, but therapies targeting VHL-related signaling pathways have been ineffective, spurring exploration of alternative pathological signaling events. Our results provide a possible mechanistic explanation for the role of SENP1 in the initiation and development of ccRCC with normal VHL activity, and identifies SENP1 as a potential treatment target for the disease.


Subject(s)
Carcinoma, Renal Cell/enzymology , Cell Proliferation , Cysteine Endopeptidases/metabolism , Glycolysis , Kidney Neoplasms/enzymology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cysteine Endopeptidases/genetics , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kaplan-Meier Estimate , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Protein Stability , Proteolysis , RNA Interference , Signal Transduction , Sumoylation , Time Factors , Transfection , Tumor Hypoxia , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
19.
Oncotarget ; 7(39): 63294-63305, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27556508

ABSTRACT

Patients with prostate cancer (PCa) have a variable prognosis. It is challenging to recognize the progressive disease. In this study, we focused on TSPAN1, a new member of the tetraspanin family. Its expression was decreased in progressive PCa and was an independent prognosis factor of biochemical recurrence after radical prostatectomy. In vitro, knockdown and overexpression of TSPAN1 in PCa cell lines showed that TSPAN1 could inhibit cell proliferation and migration. TSPAN1 was positive related to PTEN in both clinical specimen and mouse models. The combination of these two markers could increase their prognosis value especially in low risk patients. In vitro TSPAN1 knockdown resulted in increased Akt phosphorylation and caused evident cell cycle transition from G1 to S phase. Our data suggests that TSPAN1 is a valuable marker to recognize more progressive PCa.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/metabolism , Tetraspanins/metabolism , Aged , Animals , Biomarkers, Tumor/metabolism , Cell Cycle , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cohort Studies , Disease Progression , Gene Expression Profiling , HEK293 Cells , Humans , Male , Mice , Middle Aged , Neoplasm Metastasis , Neoplasm Recurrence, Local , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Prostatectomy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/surgery , Proto-Oncogene Proteins c-akt/metabolism , Tetraspanins/genetics
20.
Cell Cycle ; 15(1): 25-40, 2016.
Article in English | MEDLINE | ID: mdl-26636629

ABSTRACT

Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.


Subject(s)
Genes, cdc/immunology , Neoplasms/immunology , Receptors, Immunologic/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Humans , Leukocyte Immunoglobulin-like Receptor B1 , Neoplasms/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, Immunologic/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...