Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(1): 102769, 2023 01.
Article in English | MEDLINE | ID: mdl-36470427

ABSTRACT

Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits. Here, we report the identification and characterization of a diverse panel of 16 novel VHHs specific to PD-L1. The panel of VHHs demonstrate affinities of 0.7 nM to 5.1 µM and were able to completely inhibit PD-1 binding to PD-L1. The binding site for each VHH on PD-L1 was determined using NMR chemical shift perturbation mapping and revealed a common binding surface encompassing the PD-1-binding site. Additionally, we solved crystal structures of two representative VHHs in complex with PD-L1, which revealed unique binding modes. Similar NMR experiments were used to identify the binding site of CD80 on PD-L1, which is another immune response regulatory element and interacts with PD-L1 localized on the same cell surface. CD80 and PD-1 were revealed to share a highly overlapping binding site on PD-L1, with the panel of VHHs identified expected to inhibit CD80 binding. Comparison of the CD80 and PD-1 binding sites on PD-L1 enabled the identification of a potential antibody binding region able to confer specificity for the inhibition of PD-1 binding only, which may offer therapeutic benefits to counteract cancer cell evasion of the immune system.


Subject(s)
Antibodies , B7-1 Antigen , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Neoplasms/therapy , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Binding Sites , Crystallography , Antibodies/chemistry , Antibodies/metabolism
2.
J Immunol ; 203(7): 1693-1700, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31462504

ABSTRACT

An allergic reaction is rapidly generated when allergens bind and cross-link IgE bound to its receptor FcεRI on effector cells, resulting in cell degranulation and release of proinflammatory mediators. The extent of effector cell activation is linked to allergen affinity, oligomeric state, valency, and spacing of IgE-binding epitopes on the allergen. Whereas most of these observations come from studies using synthetic allergens, in this study we have used Timothy grass pollen allergen Phl p 7 and birch pollen allergen Bet v 4 to study these effects. Despite the high homology of these polcalcin family allergens, Phl p 7 and Bet v 4 display different binding characteristics toward two human patient-derived polcalcin-specific IgE Abs. We have used native polcalcin dimers and engineered multimeric allergens to test the effects of affinity and oligomeric state on IgE binding and effector cell activation. Our results indicate that polcalcin multimers are required to stimulate high levels of effector cell degranulation when using the humanized RBL-SX38 cell model and that multivalency can overcome the need for high-affinity interactions.


Subject(s)
Allergens/immunology , Antibody Affinity , Antigens, Plant/immunology , Calcium-Binding Proteins/immunology , Cell Degranulation , Immunoglobulin E/immunology , Models, Immunological , Plant Proteins/immunology , Allergens/genetics , Antigens, Plant/genetics , Calcium-Binding Proteins/genetics , Epitopes/genetics , Epitopes/immunology , HEK293 Cells , Humans , Plant Proteins/genetics , Protein Multimerization/genetics , Protein Multimerization/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...