Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(8): 4218-4227, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38354289

ABSTRACT

Surface-enhanced Raman scattering (SERS) has emerged as a powerful surface analytical technique that amplifies Raman scattering signals of molecules adsorbed onto metal nanostructured surfaces. The droplet reaction method has recently been employed to fabricate large-scale microring patterns of silver (Ag) nanostructures on rigid substrates, which enables sensitive detection within the ring area. However, these rigid substrates present limitations for direct on-site detection of analyte residues on irregular sample surfaces. There is a need to develop soft and flexible SERS substrates that can intimately conform to arbitrary surfaces. In this study, we presented a SERS substrate using flexible and adhesive tape as the supporting material. This SERS tape was fabricated by repeatedly transferring presynthesized Ag nanostructures from a rigid substrate to the tape. For a model compound adenine, our SERS tape exhibited a good linear response from 5 × 10-4 M to 5 × 10-5 M with a low limit of detection (LOD) of 5 × 10-7 M and displayed a SERS enhancement factor (EF) of 3.2 × 105. The relative standard deviation (RSD) of SERS intensity achieved was as low as 1.93%, indicating its outstanding uniformity. The as-prepared SERS tape was used for in situ detection of pesticide residue on an apple surface and dye residue on human hair. Leveraging the large surface area of Ag nanostructure patterns from the droplet reaction, the developed SERS tape demonstrates excellent performance in terms of sensitivity and uniformity. The successful detection of analyte residues on arbitrary surfaces of apple and human hair highlights the potential of this flexible SERS tape for real-world applications across various industries for enhanced diagnostic accuracy.

2.
Environ Sci Technol ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272008

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) has been well explored as a highly effective characterization technique that is capable of chemical pollutant detection and identification at very low concentrations. Machine learning has been previously used to identify compounds based on SERS spectral data. However, utilization of SERS to quantify concentrations, with or without machine learning, has been difficult due to the spectral intensity being sensitive to confounding factors such as the substrate parameters, orientation of the analyte, and sample preparation technique. Here, we demonstrate an approach for predicting the concentration of sample pollutants from SERS spectra using machine learning. Frequency domain transform methods, including the Fourier and Walsh-Hadamard transforms, are applied to spectral data sets of three analytes (rhodamine 6G, chlorpyrifos, and triclosan), which are then used to train machine learning algorithms. Using standard machine learning models, the concentration of the sample pollutants is predicted with >80% cross-validation accuracy from raw SERS data. A cross-validation accuracy of 85% was achieved using deep learning for a moderately sized data set (∼100 spectra), and 70-80% was achieved for small data sets (∼50 spectra). Performance can be maintained within this range even when combining various sample preparation techniques and environmental media interference. Additionally, as a spectral pretreatment, the Fourier and Hadamard transforms are shown to consistently improve prediction accuracy across multiple data sets. Finally, standard models were shown to accurately identify characteristic peaks of compounds via analysis of their importance scores, further verifying their predictive value.

3.
Biomicrofluidics ; 16(5): 051502, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36330200

ABSTRACT

Liquid-liquid extraction based on surface nanodroplets, namely nanoextraction, can continuously extract and enrich target analytes from the flow of a sample solution. This sample preconcentration technique is easy to operate in a continuous flow system with a low consumption of organic solvent and a high enrichment factor. In this review, the evolution from single drop microextraction to advanced nanoextraction will be briefly introduced. Moreover, the formation principle and key features of surface nanodroplets will be summarized. Further, the major findings of nanoextraction combined with in-droplet chemistry toward sensitive and quantitative detection will be discussed. Finally, we will give our perspectives for the future trend of nanoextraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...