Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 211(8): 1173-1179, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37782851

ABSTRACT

Bovine tuberculosis (bTB) is a zoonotic bacterial disease presenting public health, veterinary, and economic threats around the globe. Although cattle producers rely on regular testing and management practices to minimize domestic herd exposure, wildlife species around the world continue to be the main reservoirs for disease. Wildlife reservoirs for bTB include the Eurasian badger (Meles meles) in Great Britain and Ireland, the brushtail possum (Trichosurus vulpecula) in New Zealand, wild boar (Sus scrofa) in Spain, as well as white-tailed deer (Odocoileus virginianus) in the United States and red deer (Cervus elaphus) in Spain. Although all reservoir species share the ability to infect cattle, they differ in transmission capability, disease pathogenesis, diagnostic detection, and vaccination strategies. In this review, bTB interactions with these wildlife reservoirs are discussed, illustrating the need to address bTB disease in wildlife hosts to achieve eradication in domestic livestock.


Subject(s)
Deer , Mycobacterium bovis , Tuberculosis, Bovine , Cattle , Animals , Animals, Wild , Deer/microbiology , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary
2.
Front Vet Sci ; 8: 676710, 2021.
Article in English | MEDLINE | ID: mdl-34336973

ABSTRACT

Bovine tuberculosis (bTB), caused by infection with Mycobacterium bovis, continues to be a major economic burden associated with production losses and a public health concern due to its zoonotic nature. As with other intracellular pathogens, cell-mediated immunity plays an important role in the control of infection. Characterization of such responses is important for understanding the immune status of the host, and to identify mechanisms of protective immunity or immunopathology. This type of information can be important in the development of vaccination strategies, diagnostic assays, and in predicting protection or disease progression. However, the frequency of circulating M. bovis-specific T cells are often low, making the analysis of such responses difficult. As previously demonstrated in a different cattle infection model, antigenic expansion allows us to increase the frequency of antigen-specific T cells. Moreover, the concurrent assessment of cytokine production and proliferation provides a deeper understanding of the functional nature of these cells. The work presented here, analyzes the T cell response following experimental M. bovis infection in cattle via in vitro antigenic expansion and re-stimulation to characterize antigen-specific CD4, CD8, and γδ T cells and their functional phenotype, shedding light on the variable functional ability of these cells. Data gathered from these studies can help us better understand the cellular response to M. bovis infection and develop improved vaccines and diagnostic tools.

SELECTION OF CITATIONS
SEARCH DETAIL
...