Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(8): 6397-6409, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38602846

ABSTRACT

Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and noncatalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Futhermore, 10 does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.


Subject(s)
Antineoplastic Agents , Histone-Lysine N-Methyltransferase , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mice , Cell Line, Tumor , Proteolysis/drug effects , Histocompatibility Antigens/metabolism , Drug Discovery , Cell Proliferation/drug effects , Male , Structure-Activity Relationship
2.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464025

ABSTRACT

Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and non-catalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader, 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time, and ubiquitin-proteasome system (UPS)-dependent manner, does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.

3.
J Am Chem Soc ; 146(11): 7584-7593, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38469801

ABSTRACT

Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.


Subject(s)
DNA, Z-Form , Proteolysis Targeting Chimera , Proteolysis , Adenosine Deaminase/metabolism , RNA/metabolism , Ubiquitin-Protein Ligases/metabolism , DNA-Binding Proteins/metabolism
4.
Eur J Med Chem ; 267: 116154, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38295690

ABSTRACT

Aberrant expression of EZH2, the main catalytic subunit of PRC2, has been implicated in numerous cancers, including leukemia, breast, and prostate. Recent studies have highlighted non-catalytic oncogenic functions of EZH2, which EZH2 catalytic inhibitors cannot attenuate. Therefore, proteolysis-targeting chimera (PROTAC) degraders have been explored as an alternative therapeutic approach to suppress both canonical and non-canonical oncogenic activity. Here we present MS8847, a novel, highly potent EZH2 PROTAC degrader that recruits the E3 ligase von Hippel-Lindau (VHL). MS8847 degrades EZH2 in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Notably, MS8847 induces superior EZH2 degradation and anti-proliferative effects in MLL-rearranged (MLL-r) acute myeloid leukemia (AML) cells compared to previously published EZH2 PROTAC degraders. Moreover, MS8847 degrades EZH2 and inhibits cell growth in triple-negative breast cancer (TNBC) cell lines, displays efficacy in a 3D TNBC in vitro model, and has a pharmacokinetic (PK) profile suitable for in vivo efficacy studies. Overall, MS8847 is a valuable chemical tool for the biomedical community to investigate canonical and non-canonical oncogenic functions of EZH2.


Subject(s)
Leukemia, Myeloid, Acute , Triple Negative Breast Neoplasms , Male , Humans , Proteolysis , Triple Negative Breast Neoplasms/drug therapy , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Proteasome Endopeptidase Complex/metabolism , Cell Line , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL