Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 13(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275337

ABSTRACT

This study investigated the potential of pulsed electric field (PEF) extraction in enhancing the antimicrobial properties related to anti-acne and deodorant properties of Hedychium coronarium extract. The dried leaf and rhizome of H. coronarium were extracted using 95% v/v ethanol through both conventional solvent extraction and PEF extraction techniques (10, 14, and 20 kV/cm). The chemical composition of the extracts was analyzed. The antimicrobial activities, specifically in relation to acne treatment against Cutibacterium acnes and deodorant properties against Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Pseudomonas aeruginosa, and Escherichia coli, were determined. The irritation profile of was evaluated using the hen's egg chorioallantoic membrane test. The results showed that PEF extraction increased the extract yield, particularly at an electric field strength of 20 kV/cm. Furthermore, PEF extraction significantly enhanced the ellagic acid content, particularly in the leaf extract. Furthermore, the leaf extract demonstrated stronger inhibitory effects against microorganisms associated with body odor and acne compared to the rhizome extract. Notably, all extracts exhibited no signs of irritation, indicating their safety. Overall, the findings suggest that PEF extraction from H. coronarium enhances yield, bioactive compound content, and antimicrobial effects. This indicates the potential of the extract for acne treatment and deodorant use.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38251148

ABSTRACT

This study aimed to characterize and investigate the potential of the oils from Gryllus bimaculatus, Teleogryllus mitratus, and Acheta domesticus to be used in nanoemulsions. The oils were extracted by a cold press method and characterized for their fatty acid profiles. Their irritation effects on the chorioallantoic membrane (CAM) were evaluated, along with investigations of solubility and the required hydrophilic-lipophilic balance (RHLB). Various parameters impacting nanoemulsion generation using high-pressure homogenization were investigated. The findings revealed that G. bimaculatus yielded the highest oil content (24.58% w/w), followed by T. mitratus (20.96% w/w) and A. domesticus (15.46% w/w). Their major fatty acids were palmitic, oleic, and linoleic acids. All oils showed no irritation, suggesting safety for topical use. The RHLB values of each oil were around six-seven. However, they could be successfully developed into nanoemulsions using various surfactants. All cricket oils could be used for the nanoemulsion preparation, but T. mitratus yielded the smallest internal droplet size with acceptable PDI and zeta potential. Nanoemulsion was found to significantly enhance the antioxidant and anti-skin wrinkle of the T. mitratus oil. These findings pointed to the possible use of cricket oils in nanoemulsions, which could be used in various applications, including topical and cosmetic formulations.

3.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139864

ABSTRACT

This study aimed to extract aromatic compounds from the rhizomes, leaf sheaths, and leaves of Hedychium coronarium and investigate their chemical compositions, cosmetic/cosmeceutical activities, and irritation potency. The chemical compositions were investigated via gas chromatography-mass spectrometry. The antioxidant activities were evaluated via spectrophotometry. The anti-skin wrinkle properties were investigated via collagenase, elastase, and hyaluronidase inhibition. The irritation potency was observed via a hen's egg-chorioallantoic membrane test. Eucalyptol was detected as a major component in the rhizomes and leaf sheaths, while ß-caryophyllene was predominant in the leaves. The absolutes from the rhizomes were the strongest antioxidants, with ABTS scavenging properties similar to L-ascorbic acid. Interestingly, the equivalent concentration (EC1) of the absolute from the rhizome was 0.82 ± 0.01 µg FeSO4/g extract, which was significantly more potent than L-ascorbic acid (0.43 ± 0.03 µg FeSO4/g extract). The rhizome-derived absolute was the most effective against collagenase, while the concretes from the rhizomes and leaf sheaths showed promising anti-hyaluronidase activity with inhibitions of 90.5 ± 1.6% and 87.4 ± 5.1%, respectively. The irritability of the aromatic extracts was not different from that of the vehicle control, proving their safety. Therefore, the Hedychium coronarium rhizome-derived absolute was an attractive and potent antioxidant with anti-collagenase activities, indicating its potential for use in anti-aging formulations.

4.
Gels ; 9(10)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37888389

ABSTRACT

This study aimed to develop a film-forming gel containing honey aromatic water (HW) and royal jelly (RJ) for cosmetic applications as a facial peel-off mask. HW, which is industrial waste from the water-reduction process of honey, was sterilized by autoclaving and filtration through a 0.22 µm membrane. The film-forming gels were developed using various types of film-forming polymers, including polyvinyl alcohol (PVA 117), carboxymethyl cellulose (CMC), and hydroxyethyl cellulose (HEC). The gel formulations were characterized in terms of their external appearance, viscosity, pH, and drying time, whereas the films generated were characterized by a texture analyzer, microscopic investigation, Fourier transform infrared, and an X-ray diffractometer. The findings highlighted that HW has short storage shelf life due to microbial contamination. Sterilizations were required before further product development. The film-forming gel was created by using the combination of PVA 117, CMC, and HEC. HW and RJ were successfully incorporated into the film-forming gel. However, HW resulted in a decrease in the gel viscosity and mechanical properties of its film. Interestingly, the drying time was dramatically decreased, which would be more desirable for its use as a peel-off mask. Furthermore, incorporation of royal jelly enhanced the viscosity of the gels as well as improved the mechanical properties of the film. No effect on the chemical and crystal structure of the films was detected after the incorporation. Therefore, the film-forming gels containing HW and RJ, possessing aesthetic attributes that extended to both the gels themselves and the resultant films, were suitable for use as a peel-off mask.

5.
Int J Pharm ; 643: 123243, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37463620

ABSTRACT

Complexation of nicotine (NCT) and magnesium aluminum silicate (MAS) has been formed in the dispersions that required multiple preparation steps. In this study, physical blending was used to produce NCT-MAS complexes. NCT, a free-base liquid state form, was adsorbed onto the MAS granules, where the diffusion and intercalation of NCT molecules into the MAS silicate layers occurred. These processes required a minimum of the 7-d-resting period to reach NCT complete distribution. FTIR, XRD, and 29Si NMR suggest that NCT could interact with MAS via hydrogen bonding, water bridging, and ionic electrostatic force. The 12 % NCT-MAS complexes enabled a sustained release of NCT, after a 2-min burst, in pH 6 phosphate buffer through a particle diffusion-controlled mechanism. Buccal discs formulated with NCT-MAS complexes and sodium alginate (SA) as drug carriers and matrix former could control NCT released through drug diffusion and swelling-controlled mechanisms. NCT release and membrane permeation increased with increasing NCT-MAS complexes or decreasing SA concentration. All NCT-MAS-containing buccal discs exhibited mucoadhesive properties related to the swelling characteristics of SA and MAS. Conclusively, NCT-MAS complexes can be produced through an uncomplicated single-step blending process, and the complexes obtained presented a potential to serve as drug carriers in buccal matrix formulations.


Subject(s)
Drug Carriers , Nicotine , Nicotine/chemistry , Silicates/chemistry , Magnesium Compounds/chemistry , Aluminum Compounds/chemistry , Alginates/chemistry
6.
Int J Biol Macromol ; 80: 651-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26193680

ABSTRACT

The objectives of this study were to investigate the adsorption behavior of lysozyme (LSZ) onto magnesium aluminum silicate (MAS) at various pHs and to characterize the LSZ-MAS microparticles obtained from the molecular interaction between LSZ and MAS. The results showed that LSZ could be bound onto the MAS layers at different pHs, leading to the formation of LSZ-MAS microparticles. The higher preparation pH permitted greater adsorption affinity but a lower adsorption capacity of LSZ onto MAS. LSZ could interact with MAS via hydrogen bonds and electrostatic forces, resulting in the formation of intercalated nanocomposites. The particle size, %LSZ adsorbed, and LSZ release rate of LSZ-MAS microparticles increased when the LSZ-MAS ratio was increased. The secondary structure of LSZ bound onto the MAS layers in microparticles prepared at various pHs was altered compared with that of native LSZ. Moreover, the LSZ extracted from microparticles prepared at pH 4 showed an obvious change in the tertiary structure, leading to a decrease in the biological activity of the LSZ released. These findings suggested that LSZ can strongly interact with MAS to form microparticles that may potentially be used as delivery systems for sustained protein release.


Subject(s)
Aluminum Compounds/chemistry , Magnesium Compounds/chemistry , Muramidase/chemistry , Nanocomposites/chemistry , Silicates/chemistry , Adsorption , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Nanocomposites/ultrastructure , Particle Size , Protein Conformation , Spectroscopy, Fourier Transform Infrared , Static Electricity
7.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1727-36, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23827630

ABSTRACT

Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT.


Subject(s)
Aluminum Compounds/chemistry , Chitosan/chemistry , Drug Delivery Systems , Magnesium Compounds/chemistry , Microspheres , Nicotine/administration & dosage , Nicotine/pharmacology , Silicates/chemistry , Adhesiveness/drug effects , Administration, Mucosal , Animals , Calorimetry, Differential Scanning , Hydrogen-Ion Concentration , In Vitro Techniques , Particle Size , Permeability/drug effects , Spectroscopy, Fourier Transform Infrared , Static Electricity , Surface Properties , Sus scrofa , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...