Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 192(10): 656, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32968838

ABSTRACT

The extensive construction of drainage systems in the lowlands and flood plains of Slovakia has significantly changed the landscape and runoff ratios of rivers. Our study focuses on the assessment of the benefits provided by the ecosystems of water ditches and their catchment areas. Ditches and their buffer zone, similarly to other artificial anthropogenic elements in the country, fulfil various landscape-ecological functions and provide different ecosystem services (ESs) to human populations and society. As study areas, we chose ditches and their 1-km buffer zones in the Podunajská nízina (P) lowland and Východoslovenská nízina (V) lowland (Slovakia). There are notable differences between these two selected lowlands. Hence, there are also differences in their potential to provide various ESs. Based on a re-evaluation of the present state of the ditches, we evaluated nine ESs related to three main groups of ESs, using the Common International Classification of Ecosystem Services (CICES). We assessed the ESs and benefits provided by ditches and their buffer zone in two ways: (1) ES assessment by experts and (2) biophysical assessment of ESs and their benefits based on an integrated assessment framework (relations between pressures, ecological status, and delivery of ESs). Finally, we compared the potentials for provisioning of the study areas. The study area in the V lowland has the highest potential to provide "Lifecycle maintenance, habitat and gene pool protection" benefits, and the study area in the P lowland has the highest potential to provide "Surface water for non-drinking purposes."


Subject(s)
Ecosystem , Environmental Monitoring , Agriculture , Rivers , Slovakia
2.
Data Brief ; 23: 103785, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31372432

ABSTRACT

The data presented in this DiB article provide an overview of Monitoring and Evaluation (M&E) carried out for 3 European environmental policies (the Water Framework Directive, the Natura 2000 network of protected areas, and Agri-Environment Schemes implemented under the Common Agricultural Policy), as implemented in 9 cases (Catalonia (Spain), Estonia, Finland, Flanders (Belgium), Hungary, Romania, Slovakia, Scotland (UK), Sweden). These data are derived from reports and documents about monitoring programs that were publicly-available online in 2017. The literature on M&E to support adaptive management structured the issues that have been extracted and summarized. The data is related to the research article entitled "Policy-driven monitoring and evaluation: does it support adaptive management of socio-ecological systems?" [Stem et al., 2005]. The information provides a first overview of monitoring and evaluation that has been implemented in response to key European environmental policies. It provides a structured overview that permits a comparison of cases and policies and can assist other scholars and practitioners working on monitoring and evaluation.

3.
Sci Total Environ ; 662: 373-384, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30690371

ABSTRACT

Inadequate Monitoring and Evaluation (M&E) is often thought to hinder adaptive management of socio-ecological systems. A key influence on environmental management practices are environmental policies: however, their consequences for M&E practices have not been well-examined. We examine three policy areas - the Water Framework Directive, the Natura 2000 Directives, and the Agri-Environment Schemes of the Common Agricultural Policy - whose statutory requirements influence how the environment is managed and monitored across Europe. We use a comparative approach to examine what is monitored, how monitoring is carried out, and how results are used to update management, based on publicly available documentation across nine regional and national cases. The requirements and guidelines of these policies have provided significant impetus for monitoring: however, we find this policy-driven M&E usually does not match the ideals of what is needed to inform adaptive management. There is a tendency to focus on understanding state and trends rather than tracking the effect of interventions; a focus on specific biotic and abiotic indicators at the expense of understanding system functions and processes, especially social components; and limited attention to how context affects systems, though this is sometimes considered via secondary data. The resulting data are sometimes publicly-accessible, but it is rarely clear if and how these influence decisions at any level, whether this be in the original policy itself or at the level of measures such as site management plans. Adjustments to policy-driven M&E could better enable learning for adaptive management, by reconsidering what supports a balanced understanding of socio-ecological systems and decision-making. Useful strategies include making more use of secondary data, and more transparency in data-sharing and decision-making. Several countries and policy areas already offer useful examples. Such changes are essential given the influence of policy, and the urgency of enabling adaptive management to safeguard socio-ecological systems.

4.
Nature ; 556(7700): 231-234, 2018 04.
Article in English | MEDLINE | ID: mdl-29618821

ABSTRACT

Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.


Subject(s)
Altitude , Biodiversity , Geographic Mapping , Global Warming/statistics & numerical data , Plants/classification , Europe , History, 20th Century , History, 21st Century , Temperature
5.
Ecology ; 96(8): 2064-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26405732

ABSTRACT

Foundation species can change plant community structure by modulating important ecological processes such as community assembly, yet this topic is poorly understood. In alpine systems, cushion plants commonly act as foundation species by ameliorating local conditions. Here, we analyze diversity patterns of species' assembly within cushions and in adjacent surrounding open substrates (83 sites across five continents) calculating floristic dissimilarity between replicate plots, and using linear models to analyze relationships between microhabitats and species diversity. Floristic dissimilarity did not change across biogeographic regions, but was consistently lower in the cushions than in the open microhabitat. Cushion plants appear to enable recruitment of many relatively stress-intolerant species that otherwise would not establish in these communities, yet the niche space constructed by cushion plants supports a more homogeneous composition of species than the niche space beyond the cushion's influence. As a result, cushion plants support higher α-diversity and a larger species pool, but harbor assemblies with lower ß-diversity than open microhabitats. We conclude that habitats with and without dominant foundation species can strongly differ in the processes that drive species recruitment, and thus the relationship between local and regional species diversity.


Subject(s)
Biodiversity , Plants/classification , Soil/chemistry , Models, Biological , Water
6.
Ecol Lett ; 17(2): 193-202, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24238015

ABSTRACT

Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.


Subject(s)
Biodiversity , Climate , Models, Biological , Plants , Acclimatization , Altitude , Asia , Europe , Linear Models , New Zealand , North America , South America
7.
Science ; 336(6079): 353-5, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22517860

ABSTRACT

In mountainous regions, climate warming is expected to shift species' ranges to higher altitudes. Evidence for such shifts is still mostly from revisitations of historical sites. We present recent (2001 to 2008) changes in vascular plant species richness observed in a standardized monitoring network across Europe's major mountain ranges. Species have moved upslope on average. However, these shifts had opposite effects on the summit floras' species richness in boreal-temperate mountain regions (+3.9 species on average) and Mediterranean mountain regions (-1.4 species), probably because recent climatic trends have decreased the availability of water in the European south. Because Mediterranean mountains are particularly rich in endemic species, a continuation of these trends might shrink the European mountain flora, despite an average increase in summit species richness across the region.


Subject(s)
Altitude , Biodiversity , Ecosystem , Plants , Climate , Europe , Geological Phenomena
9.
Conserv Biol ; 24(1): 101-12, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20121845

ABSTRACT

Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest-dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan-European scale. We used meta-analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management-intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta-analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged forests.


Subject(s)
Biodiversity , Trees , Europe
SELECTION OF CITATIONS
SEARCH DETAIL
...