Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 320: 138068, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36754308

ABSTRACT

The exploration of graphitic carbon nitride (g-C3N4), a two-dimensional (2D) metal-free polymer semiconducting material, is largely discussed due to its large specific surface area, high electrical conductivity, thermal stability, and adaptable electronic structure. The adaption of sulfur (S) and phosphorous (P) atoms into the layers of g-C3N4 increases the electrochemical performance of detecting nilutamide (NT). The aggregation severity can be decreased by integrating S/P into g-C3N4, thereby improving surface area and electrical conductance. The g-C3N4, S/gC3N4, P/g-C3N4, and S/P/g-C3N4 were studied with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared (FTIR), Ultraviolet visible spectroscopy (UV), Thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET). The well-assigned S/P/g-C3N4 exhibited a good crystalline structure with more active sites for improved electron transfer toward NT detection. Both differential pulse voltammetry (DPV) and amperometry (IT) was studied for NT detection. The electrochemical studies were done with a linear range of 0.019-1.17 µM to 5.36-1891.98 µM in DPV and 0.01 µM-158.3 µM in IT technique. The attained limit of detection in DPV analysis was 3.2 nM and with IT analysis 2.4 nM. The nanocomposite S/P/g-C3N4 shows good selectivity towards NT. The fabricated electrode showed excellent repeatability, reproducibility, and stability, with a significant recovery range in real sample analysis.


Subject(s)
Graphite , Nitriles , Reproducibility of Results , Nitriles/chemistry , Graphite/chemistry
2.
Chemosphere ; 307(Pt 1): 135373, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35787878

ABSTRACT

The ill effects of prolonged use of rifamycin antibiotics such as rifampicin accentuates its need for detection in the environment as well as in biological fluids. Antibiotics in water and soil are long-lasting, bio-accumulative, and hazardous to aquatic species as well as human health. To address this issue, a sensing platform has been developed using Molybdenum diselenide (MoSe2) embedded on reduced graphene oxide (rGO) functionalized with ß-cyclodextrin (ß-cd) polymer. The formation of hybrid composite was validated with X-ray diffraction analysis (XRD), Raman spectroscopy, fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM) with EDX analysis. The formation of microspheres were observed with hexagonal crystal system and P63/mmc space group. Furthermore, the composite was employed to fabricate an efficient electrochemical sensor for detecting the widely used antibiotic, rifampicin (RIF). The results reveal excellent activity of the sensor with a limit of detection (LOD) of 28 nM in a linear working range from 0.019 to 374.5 µM. The sensor also exhibited a high sensitivity of 11.64 µA µM-1 cm-2. Additionally, the sensor showed appreciable recovery range when monitored in real-samples such as human serum and urine, and industrial water, and fish samples.


Subject(s)
Graphite , beta-Cyclodextrins , Animals , Anti-Bacterial Agents , Electrochemical Techniques/methods , Graphite/chemistry , Humans , Microspheres , Molybdenum/chemistry , Rifampin , Soil , Spectroscopy, Fourier Transform Infrared , Water
3.
Chemosphere ; 301: 134458, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35452642

ABSTRACT

Spinel structured aluminates TAl2O4 (T = Mg, Zn, and Cu) were synthesized by a facile hydrothermal method. The resultant enhancement in the electrochemical behavior was achieved due to the covalent synergism among the elements coexisting together. Structural and morphological characterizations were performed by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy. MgAl2O4, ZnAl2O4 and CuAl2O4 has displayed same space group Fd3m of Laue class lattice type of the cubic structure as they were synthesized at same temperature (600 °C). CuAl2O4 spinel structure displayed a nanoneedle like structure along with the small sized cylindrical particles alongside to which CuAl2O4 spinel is combined with activated carbon (CuAl/C) and was applied to develop a facile sensor for the electrochemical detection of Acetaminophen (ACAP) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which exhibited maximum conductivity, and a substantial electroactive surface area. Finally, the defect-rich composite, CuAl/C, showed excellent sensor performance towards DPV with 21.5 nM limit of detection (LOD) in a wide linear working range of 0.199 µM-165.88 µM ACAP concentration, with a high sensitivity of 19.1221 µA µM-1cm2. Additionally, the sensor showed excellent recovery results in real-time analysis for environmental aquatic samples like industrial wastewater and Tuna Fish.


Subject(s)
Aluminum Oxide , Electrochemical Techniques , Animals , Electrochemical Techniques/methods , Electrodes , Magnesium Oxide , Zinc
4.
Chemosphere ; 282: 130874, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34087558

ABSTRACT

Transition metal chalcogenides (TMCs) have great potential in diverse electrochemical technologies owing to their unique characteristics. In the present work, we portray the design and synthesis of Vanadium selenide (V2Se9)/reduced graphene oxide (rGO) forming a two-dimensional (2D) hybrid nanocomposite via a simple hydrothermal method. The successfully synthesized nanocomposite underwent in-depth surface and morphological characterizations by XRD, Raman spectroscopy, XPS, TEM, STEM and its potential as an electro catalyst was investigated by using glassy carbon electrode (GCE) for the detection of 2,4,6-trichlorophenol (TCP). The structural features favored a high charge transfer ratio, high surface area as well as excellent conductivity and catalytic activity. The V2Se9/rGO/GCE modified electrode showed a low charge transfer resistance (Rct) of 54.057 Ω cm2, a decent detection limit (LOD) of 35.07 nM and a very high sensitivity of 22 µA µM-1 cm-2 in a working range of 0.001 µM-1150 µM. This is due to the active proton interaction, surface enhancement, and positive synergistic effect between rGO and V2Se9. The proposed sensor has good detection potential in agricultural soil, river water, fish, and beverage samples like wine and apple juice. The obtained results from our investigation would elucidate the application of the catalyst in electrochemical sensors.


Subject(s)
Graphite , Nanocomposites , Animals , Electrodes , Vanadium
SELECTION OF CITATIONS
SEARCH DETAIL