Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Public Health ; 16(1): 25-33, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36459708

ABSTRACT

PURPOSE: To investigate the dematiaceous fungal profile of patients with ocular mycoses attending a tertiary eye care hospital in Coimbatore, India METHODS: The identification of dematiaceous fungus based on their morphology, their genotypes, and the measurement of the minimum inhibitory concentrations (MICs) using microdilution method of routinely used antifungal drugs were all compared. RESULTS: A total of 148 dematiaceous fungi were isolated during a study period of 27 months. Isolates were confirmed as Curvularia spp. (n = 98), Exserohilum spp. (n = 32), Alternaria spp. (n = 14), Exophiala spp. (n = 2), Cladosporium sp. (n = 1) and Aureobasidium sp. (n = 1). Out of 50 well grown isolates characterized genotypically based on the amplification and sequencing of the ITS region of the ribosomal RNA gene cluster and subsequent BLAST analysis, Curvularia lunata (n = 24), C. aeria (n = 1), C. spicifera (n = 8), C. hawaiiensis (n = 1), C. maydis (n = 2), C. papendorfii (n = 2), C. geniculata (n = 3), C. tetramera (n = 2) and Exs. rostratum (n = 7) were identified. In vitro antifungal susceptibilities of the most tested dematiaceous isolates showed that voriconazole had a MIC50 of 0.25 µg ml-1, while amphotericin B had a MIC50 of 0.25 µg ml-1 for Curvularia spp. and Alternaria spp. CONCLUSION: Voriconazole proved to be the most effective drug against the pigmented filamentous fungi, followed by amphotericin B, itraconazole and econazole.


Subject(s)
Antifungal Agents , Eye Infections, Fungal , Humans , Antifungal Agents/pharmacology , Amphotericin B/pharmacology , Voriconazole/pharmacology , Voriconazole/therapeutic use , Phylogeny , Eye Infections, Fungal/microbiology , Fungi , Microbial Sensitivity Tests
2.
Bioinorg Chem Appl ; 2022: 2724302, 2022.
Article in English | MEDLINE | ID: mdl-36147774

ABSTRACT

Lung cancer is one of the cancers with high mortality rate. The current therapeutic regimens have only limited success rate. The current work highlights the potential of Solanum procumbens-derived zinc oxide nanoparticle (SP-ZnONP)-induced apoptosis in A549 lung cancer cells. Synthesized nanoparticles were confirmed by UV-Vis spectrophotometry, X-ray diffraction (XRD), dynamic light scattering analysis (DLS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and photoluminescence analysis. Lactate dehydrogenase (LDH), cytotoxicity, and cell viability assays revealed that the SP-ZnONP caused the cell death and the inhibition concentration (IC50) was calculated to be 61.28 µg/mL. Treatment with SP-ZnONPs caused morphological alterations in cells, such as rounding, which may have been caused by the substance's impact on integrins. Acridine orange/ethidium bromide dual staining revealed that the cells undergo apoptosis in a dose-dependent manner, which indicates the cell death. Furthermore, reactive oxygen species (ROS) were examined and it was shown that the nanoparticles elevated ROS levels, which led to lipid peroxidation. In short, the SP-ZnONPs increase the level of ROS, which in turn causes lipid peroxidation results in apoptosis. On the other hand, the SP-ZnONPs decrease nitric oxide level in A549 cells in a dose-dependent manner, which also supports the apoptosis. In conclusion, SP-ZnONPs would become a promising treatment option for lung cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...