Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 388(2): 724-738, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38129129

ABSTRACT

Organophosphate (OP) nerve agent (OPNA) intoxication leads to long-term brain dysfunctions. The ineffectiveness of current treatments for OPNA intoxication prompts a quest for the investigation of the mechanism and an alternative effective therapeutic approach. Our previous studies on 1400W, a highly selective inducible nitric oxide synthase (iNOS) inhibitor, showed improvement in epilepsy and seizure-induced brain pathology in rat models of kainate and OP intoxication. In this study, magnetic resonance imaging (MRI) modalities, behavioral outcomes, and biomarkers were comprehensively investigated for brain abnormalities following soman (GD) intoxication in a rat model. T1 and T2 MRI robustly identified pathologic microchanges in brain structures associated with GD toxicity, and 1400W suppressed those aberrant alterations. Moreover, functional network reduction was evident in the cortex, hippocampus, and thalamus after GD exposure, and 1400W rescued the losses except in the thalamus. Behavioral tests showed protection by 1400W against GD-induced memory dysfunction, which also correlated with the extent of brain pathology observed in structural and functional MRIs. GD exposure upregulated iron-laden glial cells and ferritin levels in the brain and serum, 1400W decreased ferritin levels in the epileptic foci in the brain but not in the serum. The levels of brain ferritin also correlated with MRI parameters. Further, 1400W mitigated the overproduction of nitroxidative markers after GD exposure. Overall, this study provides direct evidence for the relationships of structural and functional MRI modalities with behavioral and molecular abnormalities following GD exposure and the neuroprotective effect of an iNOS inhibitor, 1400W. SIGNIFICANT STATEMENT: Our studies demonstrate the MRI microchanges in the brain following GD toxicity, which strongly correlate with neurobehavioral performances and iron homeostasis. The inhibition of iNOS with 1400W mitigates GD-induced cognitive decline, iron dysregulation, and aberrant brain MRI findings.


Subject(s)
Epilepsy , Ferroptosis , Soman , Rats , Animals , Nitric Oxide Synthase Type II/metabolism , Soman/toxicity , Epilepsy/drug therapy , Brain , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Magnetic Resonance Imaging , Ferritins/pharmacology , Iron , Benzylamines/pharmacology , Amidines/pharmacology , Amidines/therapeutic use , Nitric Oxide/metabolism
2.
Neurosci Lett ; 820: 137607, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38141752

ABSTRACT

Magnetic resonance imaging plays an important role in characterizing microstructural changes and reorganization after traumatic injuries to the nervous system. In this study, we tested the feasibility of ex-vivo spinal cord diffusion tensor imaging (DTI) in combination with in vivo brain functional MRI to characterize spinal reorganization and its supraspinal association after a hemicontusion cervical spinal cord injury (SCI). DTI parameters (fractional anisotropy [FA], mean diffusion [MD]) and fiber orientation changes related to reorganization in the contused cervical spinal cord were compared to sham specimens. Altered fiber density and fiber directions occurred across the ipsilateral and contralateral hemicords but with only ipsilateral FA and MD changes. The hemicontusion SCI resulted in ipsilateral fiber breaks, voids and vivid fiber reorientations along the injury epicenter. Fiber directional changes below the injury level were primarily inter-hemispheric, indicating prominent below-level cross-hemispheric reorganization. In vivo resting state functional connectivity of the brain from the respective rats before obtaining the spinal cord samples indicated spatial expansion and increased connectivity strength across both the sensory and motor networks after SCI. The consistency of the neuroplastic changes along the neuraxis (both brain and spinal cord) at the single-subject level, indicates that distinctive reorganizational relationships exist between the spinal cord and the brain post-SCI.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Rats , Animals , Diffusion Tensor Imaging/methods , Cervical Cord/injuries , Cervical Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Magnetic Resonance Imaging
3.
Epilepsia Open ; 8(2): 399-410, 2023 06.
Article in English | MEDLINE | ID: mdl-36718979

ABSTRACT

OBJECTIVE: Exposure to the nerve agent, soman (GD), induces status epilepticus (SE), epileptogenesis, and even death. Although rodent models studying the pathophysiological mechanisms show females to be more reactive to soman, no tangible sex differences in brains postexposure have been reported. In this study, we used multimodal imaging using MRI in adult rats to determine potential sex-based biomarkers of soman effects. METHODS: Male and female Sprague Dawley rats were challenged with 1.2 × LD50 soman followed by medical countermeasures. Ten weeks later, the brains were analyzed via structural and functional MRI. RESULTS: Despite no significant sex differences in the initial SE severity after soman exposure, long-term MRI-based structural and functional differences were evident in the brains of both sexes. While T2 MRI showed lesser soman-induced neurodegeneration, large areas of T1 enhancements occurred in females than in males, indicating a distinct pathophysiology unrelated to neurodegeneration. fMRI-based resting-state functional connectivity (RSFC), indicated greater reductions in soman-exposed females than in males, associating with the T1 enhancements (unrelated to neurodegeneration) rather than T2-hyperintensity or T1-hypointensity (representing neurodegeneration). The wider T1 enhancements associating with the decreased spontaneous neuronal activity in multiple resting-state networks in soman-exposed females than males suggest that neural changes unrelated to cellular atrophy impinge on brain function postexposure. Taken together with lower spontaneous neural activity in soman-exposed females, the results indicate some form of neuroprotective state that was not present in males. SIGNIFICANCE: The results indicate that endpoints other than neurodegeneration may need to be considered to translate sex-based nerve agent effects in humans.


Subject(s)
Nerve Agents , Soman , Status Epilepticus , Humans , Female , Rats , Male , Animals , Soman/toxicity , Nerve Agents/adverse effects , Rats, Sprague-Dawley , Status Epilepticus/chemically induced , Status Epilepticus/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging
4.
Neurotrauma Rep ; 3(1): 421-432, 2022.
Article in English | MEDLINE | ID: mdl-36337081

ABSTRACT

Afferent nociceptive activity in the reorganizing spinal cord after SCI influences supraspinal regions to establish pain. Clinical evidence of poor motor functional recovery in SCI patients with pain, led us to hypothesize that sensory-motor integration transforms into sensory-motor interference to manifest pain. This was tested by investigating supraspinal changes in a rat model of hemicontusion cervical SCI. Animals displayed ipsilateral forelimb motor dysfunction and pain, which persisted at 6 weeks after SCI. Using resting state fMRI at 8 weeks after SCI, RSFC across 14 ROIs involved in nociception, indicated lateral differences with a relatively weaker right-right connectivity (deafferented-contralateral) compared to left-left (unaffected-ipsilateral). However, the sensory (S1) and motor (M1/M2) networks showed greater RSFC using right hemisphere ROI seeds when compared to left. Voxel seeds from the somatosensory forelimb (S1FL) and M1/M2 representations reproduced the SCI-induced sensory and motor RSFC enhancements observed using the ROI seeds. Larger local connectivity occurred in the right sensory and motor networks amidst a decreasing overall local connectivity. This maladaptive reorganization of the right (deafferented) hemisphere localized the sensory component of pain emerging from the ipsilateral forepaw. A significant expansion of the sensory and motor network s overlap occurred globally after SCI when compared to sham, supporting the hypothesis that sensory and motor interference manifests pain. Voxel-seed based analysis revealed greater sensory and motor network overlap in the left hemisphere when compared to the right. This left predominance of the overlap suggested relatively larger pain processing in the unaffected hemisphere, when compared to the deafferented side.

5.
Magn Reson Imaging ; 94: 174-180, 2022 12.
Article in English | MEDLINE | ID: mdl-36241030

ABSTRACT

Although voxel-based morphometry (VBM) of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) changes aid in epileptic seizure lateralization, type of T1 pulse sequence, preprocessing steps and tissue segmentation methods lead to variation in tissue classification. Here, we test the prediction accuracy of individual MRI based tissue types and a novel composite ratio parameter [(GM + WM)/CSF], sensitive to parenchymal changes and independent of tissue classification variations. Pediatric patients with partial seizures (both simple and complex), but normal and lesion-free MRI were considered (33 patients; unilateral EEG; 17 female / 16 male; age mean ± SD = 11.5 ± 5 years). MRI based seizure lateralization was performed for each patient and verified with EEG findings alone or in combination with seizure semiology. T1 weighted MRI from patients and normal control subjects was spatially transformed to the Talairach atlas and automatically segmented into GM, WM and CSF tissue types. 41 age matched normal controls (11 female / 30 male; age mean ± SD = 14.6 ± 3 years) served as the null distribution to test tissue type deviations across each epilepsy patient. When verified with the patient EEG prediction, WM, GM and CSF had a hemispheric match of 76%, 70% and 55% respectively, while the composite ratio [(GM + WM)/CSF)] showed the highest accuracy of 85%. When EEG findings and seizure semiology were combined, MRI predictions using the composite ratio improved further to 88%. To further localize the epileptic focus, regional level (frontal, temporal, parietal and occipital) MRI predictions were obtained. The composite ratio performed at 88-91% accuracy, revealing regional MRI changes, not predictable with EEG. The results show inconsistent changes in GM and WM in majority of the pediatric epilepsy patients and demonstrate the applicability of the composite ratio [(GM + WM)/CSF)] as a superior predictor, independent of tissue classification variations. Clinical EEG findings combined with seizure semiology, can overcome scalp EEG's limitations and lean towards the MRI lateralization in specific cases.


Subject(s)
Epilepsy , White Matter , Humans , Male , Female , Child , Magnetic Resonance Imaging/methods , Gray Matter , Epilepsy/diagnostic imaging , Seizures
6.
J Neurotrauma ; 38(24): 3393-3405, 2021 12.
Article in English | MEDLINE | ID: mdl-34714150

ABSTRACT

Because the presence of pain impedes motor recovery in individuals with spinal cord injury (SCI), it is necessary to understand their supraspinal substrates in translational animal models. Using functional magnetic resonance imaging (fMRI) in a rat model of hemicontusion cervical SCI, supraspinal changes were mapped and correlated with sensorimotor behavioral outcomes. Female adult rats underwent sham or SCI using a 2.5 mm impactor and 150 kdyn force. SCI permanently impaired motor activity in only the ipsilesional forelimb along with thermal hyperalgesia at 5 and 6 weeks. Spinal MRI at 8 weeks after SCI showed ipsilateral T1 and T2 lesions with no discernable lesions across shams. fMRI mapping during electrical forepaw stimulation indicated SCI-induced sensorimotor reorganization with an expansion of the contralesional forelimb representation. Resting state fMRI-based functional connectivity density (FCD), a marker of regional neuronal hubs, increased or decreased across brain regions involved in nociception. FCD increases after SCI were in the primary and secondary somatosensory cortices (S1 and S2), anterior cingulate cortex (ACC), insula, and the pre-frontal cortex (PFC), and decreases were across the hippocampus, thalamus, hypothalamus, and amygdala in SCI. Resting state functional connectivity (RSFC) assessments from the FCD altered regions of interest indicated cortico-cortical RSFC increases and cortico-insular, cortico-thalamic, and cortico-hypothalamic RSFC decreases after SCI. Hippocampus, amygdala, and thalamus showed decreased RSFC with most cortical regions and between themselves except the hippocampus-amygdala network, which showed increased RSFC after SCI. Whereas select nociceptive region's intrinsic activity associated strongly with evoked pain behaviors after SCI (e.g., PFC, ACC, hippocampus, thalamus, hypothalamus, M1, and S1BF) other nociceptive regions had weaker associations (e.g., amygdala, insula, auditory cortex, S1FL, S1HL, S2, and M2), but differed significantly in their intrinsic activities between sham and SCI. The weaker associated nociceptive regions may possibly encode both the evoked and affective components of pain.


Subject(s)
Cervical Cord/injuries , Pain/etiology , Somatosensory Cortex/physiopathology , Spinal Cord Injuries/complications , Animals , Behavior, Animal , Disease Models, Animal , Female , Magnetic Resonance Imaging , Pain/physiopathology , Rats , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/psychology
7.
Mitochondrion ; 57: 192-204, 2021 03.
Article in English | MEDLINE | ID: mdl-33484870

ABSTRACT

Ru360, a mitochondrial Ca2+ uptake inhibitor, was tested in a unilateral fluid percussion TBI model in developing rats (P31). Vehicle and Ru360 treated TBI rats underwent sensorimotor behavioral monitoring between 24 and 72 h, thereafter which 185 brain metabolites were analyzed postmortem using LC/MS. Ru360 treatment after TBI improved sensorimotor behavioral recovery, upregulated glycolytic and pentose phosphate pathways, mitigated oxidative stress and prevented NAD+ depletion across both hemispheres. While neural viability improved ipsilaterally, it reduced contralaterally. Ru360 treatment, overall, had a global impact with most benefit near the strongest injury impact areas, while perturbing mitochondrial oxidative energetics in the milder TBI impact areas.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Metabolomics/methods , Mitochondria/metabolism , Ruthenium Compounds/administration & dosage , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/psychology , Chromatography, Liquid , Disease Models, Animal , Energy Metabolism/drug effects , Glycolysis/drug effects , Male , Mass Spectrometry , Pentose Phosphate Pathway/drug effects , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Ruthenium Compounds/pharmacology
8.
Brain Connect ; 10(9): 479-489, 2020 11.
Article in English | MEDLINE | ID: mdl-32981350

ABSTRACT

Aim: Structural connectivity in the reorganizing spinal cord after injury dictates functional connectivity and hence the neurological outcome. As magnetic resonance imaging (MRI)-based structural parameters are mostly accessible across spinal cord injury (SCI) patients, we studied MRI-based spinal morphological changes and their relationship to neurological outcome in the rat model of cervical SCI. Introduction: Functional connectivity assessments on patients with SCI rely heavily on MRI-based approaches to investigate the complete neural axis (both spinal cord and brain). Hence, underlying MRI-based structural and morphometric changes in the reorganizing spinal cord and their relationship to neurological outcomes is crucial for meaningful interpretation of functional connectivity changes across the neural axis. Methods: Young adult rats, aged 1.5 months, underwent a precise mechanical impact hemicontusion incomplete cervical SCI at the C4/C5 level, after which sensorimotor behavioral assessments were tracked during the reorganization period of 1-6 weeks, followed by MRI of the cervical spinal cord at 8 weeks after SCI. Results: A significant ipsilesional forelimb motor debilitation was observed from 1 to 6 weeks after injury. Heat sensitivity testing (Hargreaves) showed ipsilesional forelimb hypersensitivity at 5 and 6 weeks after SCI. MRI of the cervical spine showed ipsilateral T1- and T2-weighted lesions across all SCI rats compared with no significant lesions in sham rats. Morphometric assessments of the lesional and nonlesional changes showed the diverse nature of their interindividual variability in the SCI receiving rats. While the various T1 and T2 MRI lesional volumes associated weakly or moderately with neurological outcome, the nonlesional spinal morphometric changes associated much more strongly. The results have important implications for interpreting functional MRI-based functional connectivity after SCI by providing vital underlying structural changes and their relative neurological impact. Impact statement Functional connectivity assessments on patients with SCI relies heavily upon MRI based approaches. Hence, underlying MRI based structural and morphometric changes in the reorganizing spinal cord and its relationship to neurological outcomes is vital for meaningful interpretation of functional connectivity changes across the complete neural axis (both spinal cord and the brain).


Subject(s)
Cervical Cord/diagnostic imaging , Cervical Cord/injuries , Psychomotor Performance/physiology , Spinal Cord Injuries/diagnostic imaging , Animals , Cervical Cord/physiopathology , Disease Models, Animal , Magnetic Resonance Imaging , Rats , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology
9.
J Neurotrauma ; 37(7): 966-974, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31830867

ABSTRACT

Targeting mitochondrial ion homeostasis using Kaempferol, a mitochondrial Ca2+ uniporter channel activator, improves energy metabolism and behavior soon after a traumatic brain injury (TBI) in developing rats. Because of broad TBI pathophysiology and brain mitochondrial heterogeneity, Kaempferol-mediated early-stage behavioral and brain metabolic benefits may accrue from diverse sources within the brain. We hypothesized that Kaempferol influences TBI outcome by differentially impacting the neural, vascular, and synaptic/axonal compartments. After TBI at early development (P31), functional magnetic resonance imaging and diffusion tensor imaging (DTI) were applied to determine imaging outcomes at adolescence (2 months post-injury). Vehicle and Kaempferol treatments were made at 1, 24, and 48 h post-TBI, and their effects were assessed at adolescence. A significant increase in neural connectivity was observed after Kaempferol treatment as assessed by the spatial extent and strength of the somatosensory cortical and hippocampal resting-state functional connectivity (RSFC) networks. However, no significant RSFC changes were observed in the thalamus. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient, representing synaptic/axonal and microstructural integrity, showed significant improvements after Kaempferol treatment, with highest changes in the frontal and parietal cortices and hippocampus. Kaempferol treatment also increased corpus callosal FA, indicating measurable improvement in the interhemispheric structural connectivity. TBI prognosis was significantly altered at adolescence by early Kaempferol treatment, with improved neural connectivity, neurovascular coupling, and parenchymal microstructure in select brain regions. However, Kaempferol failed to improve vasomotive function across the whole brain, as measured by cerebrovascular reactivity. The differential effects of Kaempferol treatment on various brain functional compartments support diverse cellular-level mitochondrial functional outcomes in vivo.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Brain/drug effects , Brain/growth & development , Kaempferols/therapeutic use , Nerve Net/drug effects , Nerve Net/growth & development , Age Factors , Animals , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Kaempferols/pharmacology , Magnetic Resonance Imaging/trends , Male , Nerve Net/diagnostic imaging , Parenchymal Tissue/diagnostic imaging , Parenchymal Tissue/drug effects , Parenchymal Tissue/growth & development , Rats , Rats, Sprague-Dawley , Treatment Outcome
10.
Front Neurosci ; 13: 431, 2019.
Article in English | MEDLINE | ID: mdl-31130841

ABSTRACT

Traumatic brain injury (TBI) in general has varied neuropathological consequences depending upon the intensity and biomechanics of the injury. Furthermore, in pediatric TBI, intrinsic developmental changes add further complexity, necessitating a biochemical dimension for improved TBI characterization. In our earlier study investigating the subacute stage TBI metabolome (72 h post-injury) in a developmental rat model, significant ipsilateral brain biochemical changes occurred across 25 metabolite sets as determined by metabolite set enrichment analysis (MSEA). The broad metabolic perturbation was accompanied by behavioral deficits and neuronal loss across the ipsilateral hemisphere containing the injury epicenter. In order to obtain a consolidated biochemical profile of the TBI assessment, a subgrouping of the 190 identified brain metabolites was performed. Metabolites were divided into seven major subgroups: oxidative energy/mitochondrial, glycolysis/pentose phosphate pathway, fatty acid, amino acid, neurotransmitters/neuromodulators, one-carbon/folate and other metabolites. Subgroups were based on the chemical nature and association with critically altered biochemical pathways after TBI as obtained from our earlier untargeted analysis. Each metabolite subgroup extracted from the ipsilateral sham and TBI brains were modeled using multivariate partial least square discriminant analysis (PLS-DA) with the model accuracy used as a measurable index of TBI neurochemical impact. Volcano plots of each subgroup, corrected for multiple comparisons, determined the TBI neurochemical specificity. The results provide a ranked biochemical profile along with specificity of changes after developmental TBI, enabling a consolidated biochemical template for future classification of different TBI intensities and injury types in animal models.

11.
J Neurotrauma ; 36(4): 601-608, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29855211

ABSTRACT

Traumatic brain injury (TBI) is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence.1 Based on the nonlocalized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity, and neurovascular function, are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2 months after injury, using functional MRI (fMRI) and diffusion tensor imaging (DTI). fMRI-based resting-state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus, and thalamus, accompanied by decrease in spatial extent of their corresponding RSFC networks and interhemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus, and motor cortex. DTI measures of fractional anisotropy and apparent diffusion coefficient, reporting on axonal and microstructural integrity of the brain, indicated similar interhemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus, and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in interhemispheric structural connectivity. Hippocampus, thalamus, and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance, and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.


Subject(s)
Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Cerebrovascular Circulation/physiology , Neural Pathways/pathology , Neural Pathways/physiopathology , Animals , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley
12.
J Neurotrauma ; 36(8): 1264-1278, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30430900

ABSTRACT

Oxidative energy metabolism is depressed after mild/moderate traumatic brain injury (TBI) during early development, accompanied by behavioral debilitation and secondary neuronal death. A TBI metabolome analysis revealed broad effects with a striking impact on energy metabolism. Our studies on mitochondrial modulators and their effects on brain function have shown that kaempferol, a stimulator of the mitochondrial Ca2+ uniporter channel (mCU), enhanced neural and neurovascular activity in the normal brain and improved stimulus-induced brain activation and behavior after TBI during early development. Because kaempferol enhances mitochondrial Ca2+ uptake and cycling, with protective effects after TBI, we tested the hypothesis that kaempferol treatment during the acute/subacute stage after TBI (0-72 h) acted on mitochondria in improving TBI outcome. Developmental age rats (P31) underwent TBI and were treated with vehicle or kaempferol (1 mg/kg intraperitoneally) in three doses at 1, 24, and 48 h after TBI. Brains were harvested at 72 h and subjected to liquid chromatography mass spectrometric measurements. Decrease in pyruvate and tricarboxylic acid (TCA) cycle flux were observed in the untreated and vehicle-treated group, consistent with previously established energy metabolic decline after TBI. Kaempferol improved TCA cycle flux, maintained mitochondrial functional integrity as observed by decreased acyl carnitines, improved neural viability as evidenced by higher N-acetyl aspartate levels. The positive outcomes of kaempferol on metabolic profile corresponded with improved sensorimotor behavior.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Kaempferols/pharmacology , Mitochondria/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Brain Injuries, Traumatic/metabolism , Cell Survival/drug effects , Energy Metabolism/drug effects , Male , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
13.
Neurochem Int ; 120: 75-86, 2018 11.
Article in English | MEDLINE | ID: mdl-30098378

ABSTRACT

Pathophysiology of developmental traumatic brain injury (TBI) is unique due to intrinsic differences in the developing brain. Energy metabolic studies of the brain during early development (P13 to P30) have indicated acute oxidative energy metabolic decreases below 24 h after TBI, which generally recovered by 48 h. However, marked neurodegeneration and altered neural functional connectivity have been observed at later stages into adolescence. As secondary neurodegeneration is most prominent during the first week after TBI in the rat model, we hypothesized that the subacute TBI-metabolome may contain predictive markers of neurodegeneration. Sham and TBI metabolomes were examined at 72 h after a mild to moderate intensity TBI in male Sprague-Dawley rats aged P31. Sensorimotor behavior was assessed at 24, 48 and 72 h after injury, followed by 72-hour postmortem brain removal for metabolomics using Liquid Chromatography/Mass Spectrometry (LC-MS) measurement. Broad TBI-induced metabolomic shifts occurred with relatively higher intensity in the injury-lateralized (ipsilateral) hemisphere. Intensity of metabolomic perturbation correlated with the extent of sensorimotor behavioral deficit. N-acetyl-aspartate (NAA) levels at 72 h after TBI, predicted the extent of neurodegeneration assessed histochemically 7-days post TBI. Results from the multivariate untargeted approach clearly distinguished metabolomic shifts induced by TBI. Several pathways including amino acid, fatty acid and energy metabolism continued to be affected at 72 h after TBI, whose collective effects may determine the overall pathological response after TBI in early development including neurodegeneration.


Subject(s)
Behavior, Animal/physiology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Brain/growth & development , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Biomarkers/metabolism , Brain/pathology , Disease Models, Animal , Energy Metabolism/physiology , Male , Rats , Rats, Sprague-Dawley , Time Factors
14.
J Cereb Blood Flow Metab ; 37(2): 381-395, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27879386

ABSTRACT

Mitochondrial function is critical to maintain high rates of oxidative metabolism supporting energy demands of both spontaneous and evoked neuronal activity in the brain. Mitochondria not only regulate energy metabolism, but also influence neuronal signaling. Regulation of "energy metabolism" and "neuronal signaling" (i.e. neurometabolic coupling), which are coupled rather than independent can be understood through mitochondria's integrative functions of calcium ion (Ca2+) uptake and cycling. While mitochondrial Ca2+ do not affect hemodynamics directly, neuronal activity changes are mechanistically linked to functional hyperemic responses (i.e. neurovascular coupling). Early in vitro studies lay the foundation of mitochondrial Ca2+ homeostasis and its functional roles within cells. However, recent in vivo approaches indicate mitochondrial Ca2+ homeostasis as maintained by the role of mitochondrial Ca2+ uniporter (mCU) influences system-level brain activity as measured by a variety of techniques. Based on earlier evidence of subcellular cytoplasmic Ca2+ microdomains and cellular bioenergetic states, a mechanistic model of Ca2+ mobilization is presented to understand systems-level neurovascular and neurometabolic coupling. This integrated view from molecular and cellular to the systems level, where mCU plays a major role in mitochondrial and cellular Ca2+ homeostasis, may explain the wide range of activation-induced coupling across neuronal activity, hemodynamic, and metabolic responses.


Subject(s)
Calcium/metabolism , Homeostasis , Mitochondria/physiology , Brain/physiology , Calcium Channels/physiology , Calcium Signaling , Energy Metabolism , Humans , Mitochondria/metabolism
15.
Front Syst Neurosci ; 10: 19, 2016.
Article in English | MEDLINE | ID: mdl-27013987

ABSTRACT

Mild to moderate traumatic brain injury (mTBI) leads to secondary neuronal loss via excitotoxic mechanisms, including mitochondrial Ca(2+) overload. However, in the surviving cellular population, mitochondrial Ca(2+) influx, and oxidative metabolism are diminished leading to suboptimal neuronal circuit activity and poor prognosis. Hence we tested the impact of boosting neuronal electrical activity and oxidative metabolism by facilitating mitochondrial Ca(2+) uptake in a rat model of mTBI. In developing rats (P25-P26) sustaining an mTBI, we demonstrate post-traumatic changes in cerebral blood flow (CBF) in the sensorimotor cortex in response to whisker stimulation compared to sham using functional Laser Doppler Imaging (fLDI) at adulthood (P67-P73). Compared to sham, whisker stimulation-evoked positive CBF responses decreased while negative CBF responses increased in the mTBI animals. The spatiotemporal CBF changes representing underlying neuronal activity suggested profound changes to neurovascular activity after mTBI. Behavioral assessment of the same cohort of animals prior to fLDI showed that mTBI resulted in persistent contralateral sensorimotor behavioral deficit along with ipsilateral neuronal loss compared to sham. Treating mTBI rats with Kaempferol, a dietary flavonol compound that enhanced mitochondrial Ca(2+) uptake, eliminated the inter-hemispheric asymmetry in the whisker stimulation-induced positive CBF responses and the ipsilateral negative CBF responses otherwise observed in the untreated and vehicle-treated mTBI animals in adulthood. Kaempferol also improved somatosensory behavioral measures compared to untreated and vehicle treated mTBI animals without augmenting post-injury neuronal loss. The results indicate that reduced mitochondrial Ca(2+) uptake in the surviving populations affect post-traumatic neural activation leading to persistent behavioral deficits. Improvement in sensorimotor behavior and spatiotemporal neurovascular activity following kaempferol treatment suggests that facilitation of mitochondrial Ca(2+) uptake in the early window after injury may sustain optimal neural activity and metabolism and contribute to improved function of the surviving cellular populations after mTBI.

16.
NMR Biomed ; 28(11): 1579-88, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26439799

ABSTRACT

Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI.


Subject(s)
Brain/physiopathology , Calcium Signaling/physiology , Calcium/metabolism , Mitochondria/metabolism , Nerve Net/physiology , Rest/physiology , Animals , Brain Mapping/methods , Homeostasis/physiology , Magnetic Resonance Imaging/methods , Male , Metabolic Clearance Rate , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity
17.
PLoS One ; 9(2): e88751, 2014.
Article in English | MEDLINE | ID: mdl-24551151

ABSTRACT

Breath hold (BH), a commonly used task to measure cerebrovascular reactivity (CVR) in fMRI studies varies in outcome among individuals due to subject-physiology and/or BH-inspiration/expiration differences (i.e., performance). In prior age-related fMRI studies, smaller task-related BOLD response variability is observed among younger than older individuals. Also, a linear CVR versus task relationship exists in younger individuals which maybe useful to test the accuracy of CVR responses in older groups. Hence we hypothesized that subject-related physiological and/or BH differences, if present, may compromise CVR versus task linearity in older individuals. To test the hypothesis, empirical BH versus task relationships from motor and cognitive areas were obtained in younger (mean age = 26 years) and older (mean age = 58 years) human subjects. BH versus task linearity was observed only in the younger group, confirming our hypothesis. Further analysis indicated BH responses and its variability to be similar in both younger and older groups, suggesting that BH may not accurately represent CVR in a large age range. Using the resting state fluctuation of amplitude (RSFA) as an unconstrained alternative to BH, subject-wise correspondence between BH and RSFA was tested. Correlation between BH versus RSFA was significant within the motor but was not significant in the cognitive areas in the younger and was completely disrupted in both areas in the older subjects indicating that BH responses are constrained by subject-related physiology and/or performance-related differences. Contrasting BH to task, RSFA-task relationships were independent of age accompanied by age-related increases in CVR variability as measured by RSFA, not observed with BH. Together the results obtained indicate that RSFA accurately represents CVR in any age range avoiding multiple and yet unknown physiologic and task-related pitfalls of BH.


Subject(s)
Brain/physiology , Breath Holding , Cerebrovascular Circulation/physiology , Adult , Age Factors , Aged , Biomarkers/analysis , Brain/anatomy & histology , Brain Mapping , Exhalation/physiology , Female , Humans , Inhalation/physiology , Magnetic Resonance Imaging , Male , Middle Aged
18.
PLoS One ; 8(5): e63317, 2013.
Article in English | MEDLINE | ID: mdl-23650561

ABSTRACT

Mitochondrial Ca(2+) uptake, central to neural metabolism and function, is diminished in aging whereas enhanced after acute/sub-acute traumatic brain injury. To develop relevant translational models for these neuropathologies, we determined the impact of perturbed mitochondrial Ca(2+) uptake capacities on intrinsic brain activity using clinically relevant markers. From a multi-compartment estimate of probable baseline Ca(2+) ranges in the brain, we hypothesized that reduced or enhanced mitochondrial Ca(2+) uptake capacity would decrease or increase spontaneous neuronal activity respectively. As resting state fMRI-BOLD fluctuations and stimulus-evoked BOLD responses have similar physiological origins [1] and stimulus-evoked neuronal and hemodynamic responses are modulated by mitochondrial Ca(2+) uptake capacity [2], [3] respectively, we tested our hypothesis by measuring hemodynamic fluctuations and spontaneous neuronal activities during normal and altered mitochondrial functional states. Mitochondrial Ca(2+) uptake capacity was perturbed by pharmacologically inhibiting or enhancing the mitochondrial Ca(2+) uniporter (mCU) activity. Neuronal electrical activity and cerebral blood flow (CBF) fluctuations were measured simultaneously and integrated with fMRI-BOLD fluctuations at 11.7T. mCU inhibition reduced spontaneous neuronal activity and the resting state functional connectivity (RSFC), whereas mCU enhancement increased spontaneous neuronal activity but reduced RSFC. We conclude that increased or decreased mitochondrial Ca(2+) uptake capacities lead to diminished resting state modes of brain functional connectivity.


Subject(s)
Mitochondria/physiology , Neocortex/physiology , Animals , Calcium/metabolism , Calcium Channels/metabolism , Evoked Potentials/drug effects , Kaempferols/pharmacology , Magnetic Resonance Imaging , Male , Mitochondria/drug effects , Neocortex/drug effects , Rats , Rats, Sprague-Dawley , Rest/physiology , Ruthenium Compounds/pharmacology
19.
J Cereb Blood Flow Metab ; 33(7): 1115-26, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23591650

ABSTRACT

Local calcium (Ca(2+)) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca(2+) uptake. Mitochondria take up Ca(2+) through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca(2+). Known only in vitro, the in vivo impact of mCU activity may reveal Ca(2+)-mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca(2+) sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca(2+) distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca(2+)-dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca(2+) uptake-mediated integrative role of in vivo mitochondria on neocortical activity.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Evoked Potentials, Somatosensory/drug effects , Mitochondria/metabolism , Neocortex/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cerebrovascular Circulation/drug effects , Dose-Response Relationship, Drug , Electric Stimulation , Evoked Potentials, Somatosensory/physiology , Kaempferols/pharmacology , Magnetic Resonance Imaging , Male , Neocortex/drug effects , Neocortex/physiopathology , Oxygen/blood , Rats , Rats, Sprague-Dawley , Ruthenium Compounds/pharmacology
20.
Cereb Cortex ; 23(2): 255-63, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22345358

ABSTRACT

Functional magnetic resonance imaging signals, in addition to reflecting neuronal response, also contain physiological variances. These factors may introduce variability into blood oxygen level-dependent (BOLD) activation results, particularly in different population groups. In this study, we hypothesized that the amplitude as well as the spatial extent of BOLD activation could be improved after minimizing the variance caused by the neurovascular and anatomical factors. Subjects were scanned while they performed finger tapping and digit-symbol substitution tasks (DSSTs). Partial volume and neurovascular effects were estimated on a voxelwise basis using subjects' own gray matter volume (GMV), breath holding (BH), and amplitude of low-frequency fluctuation (ALFF). The results showed that all individual's GMV, BH, and ALFF could significantly predict motor and DSST activations in a voxelwise manner. Whole-brain analyses were conducted to regress out the anatomical and neurovascular information. Differential maps (obtained using t-test) indicated that the adjustment tended to suppress activation in regions that were near vessels such as midline cingulate gyrus, bilateral anterior insula, and posterior cerebellum. These results suggest that voxelwise adjustment using GMV and neurovascular parameters can minimize structural and physiological variances among individuals and be used for quantitative comparisons.


Subject(s)
Brain Mapping/methods , Brain/blood supply , Brain/physiology , Oxygen/blood , Calibration , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...