Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 57(5): 1840-1846, 2020 May.
Article in English | MEDLINE | ID: mdl-32327794

ABSTRACT

The aim of the present study was to determine the chemical composition (organic acids-acetic, tartaric, citric; sugars-sucrose, glucose, fructose; total acidity, alcohol content, pH-with FTIR instrument; content of selected mineral compounds-AAS instrument), antioxidant activity, antimicrobial activity and sensory profiles of prepared kombucha tea beverage. Black tea with white sugar as a substrate for kombucha beverage was used as a control sample. The dominant organic acid in kombucha tea beverage was acetic acid (1.55 g/L), followed by tartaric and citric acids. The sucrose (17.81 g/L) was the dominant sugar from detected sugars. Antioxidant activity of beverage tested by reducing power method (1318.56 mg TEAC/L) was significantly higher (p < 0.05) in comparison with black tea (345.59 mg TEAC/L). The same tendency was observed for total polyphenol content which was significantly higher (p < 0.05) in kombucha beverage (412.25 mg GAE/L) than in black tea (180.17 mg GAE/L). Among mineral compounds, the amount of manganese (1.57 mg/L) and zinc (0.53 mg/L) was the highest in kombucha tea beverage. Results of antimicrobial activity of kombucha tea beverage showed strong inhibition of Candida krusei CCM 8271 (15.81 mm), C. glabrata CCM 8270 (16 mm), C. albicans CCM 8186 (12 mm), C. tropicalis CCM 8223 (14 mm), Haemophilus influenzae CCM 4454 (10 mm) and Escherichia coli CCM 3954 (4 mm). Sensory properties of prepared beverage were evaluated overall as good with the best score in a taste (pleasant fruity-sour taste). The consumption of kombucha tea beverage as a part of drinking mode of consumers due to health benefits is recommended.

2.
Molecules ; 24(23)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783504

ABSTRACT

Male subfertility is a global issue in human reproduction as well as in animal reproduction. Bacterial infection and semen contamination are still widely overlooked. As the collection of ejaculates is not a sterile process, it is necessary to add antimicrobial agents to avoid a possible depreciation of semen samples. As traditionally used antibiotics have been questioned because of an ever-increasing bacterial resistance, natural bioactive molecules could offer an alternative because of their antibacterial and antioxidant properties. As such, we decided to compare the effects of selected natural biomolecules (resveratrol-RES, quercetin-QUE and curcumin-CUR) with routinely used antibiotics in animal biotechnologies (penicillin-PEN, gentamicin-GEN and kanamycin-KAN) on the rabbit sperm vitality in the presence of Enterococcus faecalis. Changes in the sperm structural integrity and functional activity were monitored at 0, 2, 4 and 6 h. Computer-assisted sperm analysis (CASA) was used for the assessment of spermatozoa motility. Production of reactive oxygen species (ROS) was evaluated using chemiluminiscence, while the mitochondrial membrane potential (ΔΨm) was examined using the JC-1 dye. Finally, the sperm chromatin dispersion (SCD) test was used to assess DNA fragmentation, and changes to the membrane integrity were evaluated with the help of annexin V/propidium iodide. The motility assessment revealed a significant sperm motility preservation following treatment with GEN (p < 0.001), followed by PEN and CUR (p < 0.01). QUE was the most capable substance to scavenge excessive ROS (p < 0.001) and to maintain ΔΨm (p < 0.01). The SCD assay revealed that the presence of bacteria and antibiotics significantly (p < 0.05) increased the DNA fragmentation. On the other hand, all bioactive compounds readily preserved the DNA integrity (p < 0.05). In contrast to the antibiotics, the natural biomolecules significantly maintained the sperm membrane integrity (p < 0.05). The microbiological analysis showed that GEN (p < 0.001), KAN (p < 0.001), PEN (p < 0.01) and CUR (p < 0.01) exhibited the strongest antibacterial activity against E. faecalis. In conclusion, all selected biomolecules provided protection to rabbit spermatozoa against deleterious changes to their structure and function as a result of Enterococcus faecalis contamination. Therefore, administration of RES, QUE and/or CUR to rabbit semen extenders in combination with a carefully selected antibacterial substance may be desirable.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Biological Products/pharmacology , Enterococcus faecalis/drug effects , Oxidative Stress/drug effects , Semen/microbiology , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/microbiology , Curcumin/chemistry , Curcumin/pharmacology , DNA Fragmentation/drug effects , Infertility, Male/drug therapy , Infertility, Male/metabolism , Infertility, Male/microbiology , Male , Membrane Potential, Mitochondrial/drug effects , Quercetin/chemistry , Quercetin/pharmacology , Rabbits , Reactive Oxygen Species/metabolism , Resveratrol/chemistry , Resveratrol/pharmacology , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/microbiology
3.
Microb Pathog ; 132: 313-318, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30999019

ABSTRACT

Effective and reliable methods of identification of Pseudomonas species are important for the characterization of microorganisms. Freshwater ecosystems are an important source of Pseudomonas species, including those pathogenic to fish and humans. The aim of the present study was to compare the identification conducted with MALDI-TOF MS Biotyper and 16S rDNA sequencing of fish-borne Pseudomonas spp. Altogether, 13 different Pseudomonas spp. were isolated from freshwater fish. Phylogenetic analysis showed a clear taxonomic placement only for 13 out of 15 Pseudomonas isolates. Accordance of identification method was found only in 6 out of 15 isolates. The human pathogenic Pseudomonas spp. were not found in our study, indicating that the fish could be considered as safe for consumption. The present study revealed a high discriminatory power of the mass spectra investigation and 16S rDNA gene sequencing technology for the identification of Pseudomonas spp. associated with freshwater fish.


Subject(s)
DNA, Ribosomal/genetics , Fishes/microbiology , Pseudomonas/genetics , Pseudomonas/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Bacterial Typing Techniques/methods , DNA, Bacterial/genetics , Phylogeny , Pseudomonas/classification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
4.
J Environ Sci Health B ; 51(1): 52-6, 2016.
Article in English | MEDLINE | ID: mdl-26549195

ABSTRACT

Different lactic acid bacteria strains have been shown to cause wine spoilage, including the generation of substances undesirable for the health of wine consumers. The aim of this study was to investigate the occurrence of selected species of heterofermentative lactobacilli, specifically Lactobacillus brevis, Lactobacillus hilgardii, and Lactobacillus plantarum in six different Slovak red wines following the fermentation process. In order to identify the dominant Lactobacillus strain using quantitative (real time) polymerized chain reaction (qPCR) method, pure lyophilized bacterial cultures from the Czech Collection of Microorganisms were used. Six different red wine samples following malolactic fermentation were obtained from selected wineries. After collection, the samples were subjected to a classic plate dilution method for enumeration of lactobacilli cells. Real-time PCR was performed after DNA extraction from pure bacterial strains and wine samples. We used SYBR® Green master mix reagents for measuring the fluorescence in qPCR. The number of lactobacilli ranged from 3.60 to 5.02 log CFU mL(-1). Specific lactobacilli strains were confirmed by qPCR in all wine samples. The number of lactobacilli ranged from 10(3) to 10(6) CFU mL(-1). A melting curve with different melting temperatures (T(m)) of DNA amplicons was obtained after PCR for the comparison of T(m) of control and experimental portions, revealing that the most common species in wine samples was Lactobacillus plantarum with a T(m) of 84.64°C.


Subject(s)
Lactic Acid/metabolism , Lactobacillus/isolation & purification , Wine/microbiology , Lactobacillus/classification , Real-Time Polymerase Chain Reaction , Slovakia
SELECTION OF CITATIONS
SEARCH DETAIL
...