Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 43(7): 172, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874775

ABSTRACT

KEY MESSAGE: The heat stress transcription factor HSFA2e regulates both temperature and drought response via hormonal and secondary metabolism alterations. High temperature and drought are the primary yield-limiting environmental constraints for staple food crops. Heat shock transcription factors (HSF) terminally regulate the plant abiotic stress responses to maintain growth and development under extreme environmental conditions. HSF genes of subclass A2 predominantly express under heat stress (HS) and activate the transcriptional cascade of defense-related genes. In this study, a highly heat-inducible HSF, HvHSFA2e was constitutively expressed in barley (Hordeum vulgare L.) to investigate its role in abiotic stress response and plant development. Transgenic barley plants displayed enhanced heat and drought tolerance in terms of increased chlorophyll content, improved membrane stability, reduced lipid peroxidation, and less accumulation of ROS in comparison to wild-type (WT) plants. Transcriptome analysis revealed that HvHSFA2e positively regulates the expression of abiotic stress-related genes encoding HSFs, HSPs, and enzymatic antioxidants, contributing to improved stress tolerance in transgenic plants. The major genes of ABA biosynthesis pathway, flavonoid, and terpene metabolism were also upregulated in transgenics. Our findings show that HvHSFA2e-mediated upregulation of heat-responsive genes, modulation in ABA and flavonoid biosynthesis pathways enhance drought and heat stress tolerance.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Heat-Shock Response , Hordeum , Plant Growth Regulators , Plant Proteins , Plants, Genetically Modified , Hordeum/genetics , Hordeum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Heat-Shock Response/genetics , Plant Growth Regulators/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Chlorophyll/metabolism , Stress, Physiological/genetics , Secondary Metabolism/genetics , Metabolic Networks and Pathways/genetics , Drought Resistance
2.
Plant Physiol Biochem ; 202: 107971, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37619269

ABSTRACT

Field pea (Pisum sativum L, 2n = 14) is a popular temperate legume with high economic value. Heat shock factors (HSFs) are the core element in the regulatory mechanism of heat stress responses. HSFs in pea (P. sativum) have not been characterized and their role remains unclear in different abiotic stresses. To address this knowledge gap, the current study aimed to characterize the HSF gene family in pea. We identified 38 PsHsf members in P. sativum, which are distributed on the seven chromosomes, and based on phylogenetic analysis, we classified them into three representative classes i.e. A, B, and C. Conserved motif and gene structure analysis confirmed a high degree of similarity among the members of the same class. Additionally, identified cis-acting regulatory elements (CAREs) related to abiotic responses, development, growth, and hormone signaling provides crucial insights into the regulatory mechanisms of PsHsfs. Our research revealed instances of gene duplication in PsHsf gene family, suggesting that this mechanism could be driving the expansion of the PsHsf gene family. Moreover, Expression analysis of PsHsfs exhibited upregulation under heat stress (HS), salt stress (SS), and drought stress (DS) showing their phenomenal role in stress conditions. PsHsfs protein interaction network suggested their involvement in stress-responsive mechanisms. Further transactivation potential was checked for spliced variant of PsHsfA2a (PsHsfA2aI, PsHsfA2aII, and PsHsfA2aIII), PsHsfA3, PsHsfA6b, PsHsfA9, PsHsfB1a, and PsHsfB2a. Overall, these findings provide valuable insight into the evolutionary relationship of PsHsf gene family and their role in abiotic stress responses.


Subject(s)
Biological Evolution , Pisum sativum , Pisum sativum/genetics , Phylogeny , Heat Shock Transcription Factors/genetics , Transcriptional Activation/genetics
3.
Planta ; 252(4): 53, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32945950

ABSTRACT

MAIN CONCLUSION: Overexpressing a heat shock factor gene (TaHsfA6bT) from wheat provides thermotolerance in barley by constitutive expression of heat and other abiotic stress-response genes. Temperature is one of the most crucial abiotic factors defining the yield potential of temperate cereal crops, such as barley. The regulators of heat shock response (HSR), heat stress transcription factors (Hsfs), modulate the transcription level of heat-responsive genes to protect the plants from heat stress. In this study, an Hsf from wheat (TaHsfA6b) is overexpressed in barley for providing thermotolerance. Transgenic barley lines overexpressing TaHsfA6b showed improvement in thermotolerance. The constitutive overexpression of a TaHsfA6b gene upregulated the expression of major heat shock proteins and other abiotic stress-responsive genes. RNA-seq and qRT-PCR analysis confirmed the upregulation of Hsps, chaperonins, DNAJ, LEA protein genes, and genes related to anti-oxidative enzymes in transgenic lines. Excessive generation and accumulation of reactive oxygen species (ROS) occurred in wild-type (WT) plants during heat stress; however, the transgenic lines reflected improved ROS homeostasis mechanisms, showing lesser ROS accumulation under high temperature. No negative phenotypic changes were observed in overexpression lines. These results suggest that TaHsfA6b is a regulator of HSR and its overexpression altered the expression patterns of some main stress-related genes and enhanced the thermotolerance of this cereal crop.


Subject(s)
Gene Expression , Hordeum , Plant Proteins , Thermotolerance , Transcription Factors , Triticum , Heat-Shock Response/genetics , Hordeum/genetics , Hordeum/metabolism , Hot Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Thermotolerance/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/genetics
4.
Drug Dev Ind Pharm ; 28(5): 473-93, 2002 May.
Article in English | MEDLINE | ID: mdl-12098838

ABSTRACT

The main aim of pharmacotherapeutics is the attainment of an effective drug concentration at the intended site of action for a sufficient period of time to elicit the response. A major problem being faced in ocular therapeutics is the attainment of an optimal concentration at the site of action. Poor bioavailability of drugs from ocular dosage forms is mainly due to the tear production, non-productive absorption, transient residence time, and impermeability of corneal epithelium. This article reviews: (1) the barriers that decrease the bioavailability of an ophthalmic drug; (2) the objectives to be considered in producing optimal formulations; and (3) the approaches being used to improve the corneal penetration of a drug molecule and delay its elimination from the eye. The focus of this review is on the recent developments in topical ocular drug delivery systems, the rationale for their use, their drug release mechanism, and the characteristic advantages and limitations of each system. In addition, the review attempts to give various analytical procedures including the animal models and other models required for bioavailability and pharmacokinetic studies. The latter can aid in the design and predictive evaluation of newer delivery systems. The dosage forms are divided into the ones which affect the precorneal parameters, and those that provide a controlled and continuous delivery to the pre- and intraocular tissues. The systems discussed include: (a) the commonly used dosage forms such as gels, viscosity imparting agents, ointments, and aqueous suspensions; (b) the newer concept of penetration enhancers, phase transition systems, use of cyclodextrins to increase solubility of various drugs, vesicular systems, and chemical delivery systems such as the prodrugs; (c) the developed and under-development controlled/continuous drug delivery systems including ocular inserts, collagen shields, ocular films, disposable contact lenses, and other new ophthalmic drug delivery systems; and (d) the newer trends directed towards a combination of drug delivery technologies for improving the therapeutic response of a non-efficacious drug. The fruitful resolution of the above-mentioned technological suggestions can result in a superior dosage form for both topical and intraocular ophthalmic application.


Subject(s)
Ophthalmic Solutions/administration & dosage , Absorption , Administration, Topical , Animals , Biological Availability , Delayed-Action Preparations , Drug Delivery Systems , Eye Diseases/drug therapy , Eye Diseases/metabolism , Humans , Models, Animal , Ophthalmic Solutions/pharmacokinetics , Ophthalmic Solutions/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...