Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Dev Psychobiol ; 66(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38601953

ABSTRACT

Parent-child relationship dynamics have been shown to predict socioemotional and behavioral outcomes for children, but little is known about how they may affect biological development. The aim of this study was to test if observational assessments of parent-child relationship dynamics (cohesion, enmeshment, and disengagement) were associated with three biological indices of early life adversity and downstream health risk: (1) methylation of the glucocorticoid receptor gene (NR3C1), (2) telomere attrition, and (3) mitochondrial biogenesis, indexed by mitochondrial DNA copy number (mtDNAcn), all of which were measured in children's saliva. We tested hypotheses using a sample of 254 preschool-aged children (M age = 51.04 months) with and without child welfare-substantiated maltreatment (52% with documented case of moderate-severe maltreatment) who were racially and ethnically diverse (17% Black, 40% White, 23% biracial, and 20% other races; 45% Hispanic) and from primarily low-income backgrounds (91% qualified for public assistance). Results of path analyses revealed that: (1) higher parent-child cohesion was associated with lower levels of methylation of NR3C1 exon 1D and longer telomeres, and (2) higher parent-child disengagement was associated with higher levels of methylation of NR3C1 exon 1D and shorter telomeres. Results suggest that parent-child relationship dynamics may have distinct biological effects on children.


Subject(s)
Child Abuse , Telomere Shortening , Child, Preschool , Humans , Child Abuse/psychology , DNA Methylation , Parent-Child Relations , Poverty
2.
Psychosom Med ; 86(1): 37-43, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37769227

ABSTRACT

OBJECTIVES: Mitochondrial dysfunction is implicated in the pathophysiology of psychiatric disorders. Levels of circulating cell-free mitochondrial DNA (cf-mtDNA) are observed to be altered in depression. However, the few studies that have measured cf-mtDNA in depression have reported conflicting findings. This study examined cf-mtDNA and depressive symptoms in low-active adults who smoke. METHODS: Participants were adults 18 to 65 years old ( N = 109; 76% female) with low baseline physical activity and depressive symptoms recruited for a smoking cessation study. Self-report measures assessed depression severity, positive and negative affect, and behavioral activation. Blood was collected and analyzed for cf-mtDNA. Relationships between depressive symptoms and cf-mtDNA were examined with correlations and linear regression. RESULTS: Levels of cf-mtDNA were associated with categorically defined depression (Center for Epidemiologic Studies Depression Scale score >15), lower positive affect, and decreased behavioral activation ( p < .05). Relationships remained significant after adjustment for age, sex, and nicotine dependence. In a linear regression model including all depressive symptom measures as predictors, Center for Epidemiologic Studies Depression Scale group and lower positive affect remained significant. CONCLUSIONS: This work suggests that mitochondrial changes are associated with depressive symptoms in low-active adults who smoke. Higher levels of cf-mtDNA in association with depression and with lower positive affect and decreased behavioral activation are consistent with a possible role for mitochondrial function in depressive symptoms.


Subject(s)
Cell-Free Nucleic Acids , Tobacco Use Disorder , Adult , Humans , Female , Adolescent , Young Adult , Middle Aged , Aged , Male , Depression/complications , DNA, Mitochondrial/genetics , Mitochondria , Smoking
4.
Biol Psychiatry Glob Open Sci ; 2(1): 54-60, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36324603

ABSTRACT

Background: Early-life stress is associated with alterations in telomere length, a marker of accumulated stress and aging, and a risk factor for psychiatric disorders. Nonhuman primate maternal variable foraging demand (VFD) is a validated early-life stress model, resulting in anxiety- and depressive-like symptoms in offspring. Previous studies reported increased plasma glucagon-like peptide 1 (pGLP-1) along with insulin resistance in this model. We investigated whether VFD rearing related to adult telomere length and to these neuroendocrine markers. Methods: Adult leukocyte telomere length was measured in VFD-reared (12 males, 13 females) and non-VFD-reared (9 males, 26 females) bonnet macaques. Associations between adult telomere length and adolescent fasting pGLP-1 or insulin resistance in VFD-reared versus non-VFD-reared groups were examined using regression modeling, controlling for sex, weight, and age. Results: VFD subjects had relatively longer telomeres than non-VFD subjects (p = .017), and females relatively longer than males (p = .0004). Telomere length was positively associated with pGLP-1 (p = .0009) and with reduced insulin sensitivity (p < .0001) in both sexes, but not as a function of rearing group. Conclusions: Unexpectedly, VFD was associated with longer adult telomere length. Insulin resistance may lead to higher pGLP-1 levels in adolescence, which could protect telomere length in VFD offspring as adults. Associations between adult telomere length and adolescent insulin resistance and high pGLP-1 may reflect an adaptive, compensatory response after early-life stress exposure.

5.
Brain Behav Immun Health ; 25: 100519, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36164463

ABSTRACT

Background and aims: Cell-free DNA (cfDNA) is elevated in several disease states. Metabolic syndrome is a constellation of factors associated with poor cardiometabolic outcomes. This study examined associations of cfDNA from the nucleus (cf-nDNA) and mitochondria (cf-mtDNA), C-reactive protein (CRP), and metabolic syndrome risk, in low-active smokers with depressive symptoms. Methods: Participants (N = 109; mean age 47) self-reported medical history. Physical activity was determined by accelerometry and anthropometrics were measured. Blood was collected and analyzed for cf-nDNA, cf-mtDNA, CRP, triglycerides, high-density lipoprotein, hemoglobin A1c. A continuous metabolic syndrome composite risk score was calculated. Relationships of cf-nDNA, cf-mtDNA, CRP, and cardiometabolic risk were examined with correlations and linear regression. Results: CRP and cf-nDNA were significantly associated with metabolic syndrome risk (r = .39 and r = .31, respectively), cf-mtDNA was not (r = .01). In a linear regression, CRP and cf-nDNA significantly predicted the metabolic syndrome risk score, findings that remained significant controlling for age, gender, nicotine dependence, and physical activity. Conclusions: Associations of cf-nDNA with both CRP and metabolic risk suggest a role for cf-nDNA in inflammatory processes associated with metabolic syndrome. The negative findings for cf-mtDNA suggest distinct roles for cf-nDNA and cf-mtDNA in these processes.

6.
Sci Rep ; 12(1): 10174, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35715434

ABSTRACT

Nsp1 is one of the first proteins expressed from the SARS-CoV-2 genome and is a major virulence factor for COVID-19. A rapid multiplexed assay for detecting the action of Nsp1 was developed in cultured lung cells. The assay is based on the acute cytopathic effects induced by Nsp1. Virtual screening was used to stratify compounds that interact with two functional Nsp1 sites: the RNA-binding groove and C-terminal helix-loop-helix region. Experimental screening focused on compounds that could be readily repurposed to treat COVID-19. Multiple synergistic combinations of compounds that significantly inhibited Nsp1 action were identified. Among the most promising combinations are Ponatinib, Rilpivirine, and Montelukast, which together, reversed the toxic effects of Nsp1 to the same extent as null mutations in the Nsp1 gene.


Subject(s)
COVID-19 Drug Treatment , Cell Line , Humans , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Virulence Factors
7.
Psychoneuroendocrinology ; 116: 104632, 2020 06.
Article in English | MEDLINE | ID: mdl-32199200

ABSTRACT

OBJECTIVE: Glucocorticoid receptor gene (NR3C1) promoter methylation influences cellular expression of the glucocorticoid receptor and is a proposed mechanism by which early life stress impacts neuroendocrine function. Mitochondria are sensitive and responsive to neuroendocrine stress signaling through the glucocorticoid receptor, and recent evidence with this sample and others shows that mitochondrial DNA copy number (mtDNAcn) is increased in adults with a history of early stress. No prior work has examined the role of NR3C1 methylation in the association between early life stress and mtDNAcn alterations. METHODS: Adult participants (n = 290) completed diagnostic interviews and questionnaires characterizing early stress and lifetime psychiatric symptoms. Medical conditions, active substance abuse, and prescription medications other than oral contraceptives were exclusionary. Subjects with a history of lifetime bipolar, obsessive-compulsive, or psychotic disorders were excluded; individuals with other forms of major psychopathology were included. Whole blood mtDNAcn was measured using qPCR; NR3C1 methylation was measured via pyrosequencing. Multiple regression and bootstrapping procedures tested NR3C1 methylation as a mediator of effects of early stress on mtDNAcn. RESULTS: The positive association between early adversity and mtDNAcn (p = .02) was mediated by negative associations of early adversity with NR3C1 methylation (p = .02) and NR3C1 methylation with mtDNAcn (p < .001). The indirect effect involving early adversity, NR3C1 methylation, and mtDNAcn was significant (95 % CI [.002, .030]). CONCLUSIONS: NR3C1 methylation significantly mediates the association between early stress and mtDNAcn, suggesting that glucocorticoid receptor signaling may be a mechanistic pathway underlying mtDNAcn alterations of interest for future longitudinal work.


Subject(s)
Adverse Childhood Experiences , DNA Copy Number Variations/genetics , DNA Methylation/physiology , DNA, Mitochondrial/genetics , Neurosecretory Systems/metabolism , Organelle Biogenesis , Receptors, Glucocorticoid/metabolism , Stress, Psychological/metabolism , Adult , Female , Humans , Male , Middle Aged , Signal Transduction , Young Adult
9.
Psychoneuroendocrinology ; 107: 261-269, 2019 09.
Article in English | MEDLINE | ID: mdl-31174164

ABSTRACT

OBJECTIVE: Childhood maltreatment is a major risk factor for the development of behavioral problems and poor physical and mental health. Accelerated cellular aging, through reduced telomere length and mitochondrial dysfunction, may be a mechanism underlying these associations. METHODS: Families with (n = 133) and without (n = 123) child welfare documentation of moderate-severe maltreatment in the past six months participated in this study. Children ranged in age from 3 to 5 years, were racially and ethnically diverse, and 91% qualified for public assistance. Structured record review and interviews were used to assess a history of maltreatment and other adversities. Telomere length and mitochondrial DNA copy number (mtDNAcn) were measured from saliva DNA using real-time PCR. Measures were repeated at a six-month follow-up assessment. Repeated measures general linear models were used to examine the effects of maltreatment and other adversities on telomere length and mtDNAcn over time. RESULTS: Maltreatment and other adverse experiences were significant positive predictors of both telomere length and mtDNAcn over time. Internalizing and externalizing behavior problems were also both significantly associated with telomere length, but only internalizing symptoms were associated with mtDNAcn. CONCLUSIONS: This is the first study to show that mtDNAcn is altered in children with stress and trauma, and the findings are consistent with recent studies of adults. Surprisingly, children who experienced moderate-severe levels of maltreatment in the prior six months had longer telomeres, possibly reflecting compensatory changes in response to recent trauma. Telomere length and mtDNAcn were also associated with behavioral problems, suggesting that these measures of cellular aging may be causally implicated in the pathophysiology of stress-related conditions.


Subject(s)
Cellular Senescence/genetics , Child Abuse/psychology , Telomere Homeostasis/genetics , Adult , Biomarkers , Child, Preschool , Cohort Studies , DNA, Mitochondrial/genetics , Female , Humans , Male , Mitochondria/genetics , Problem Behavior , Risk Factors , Stress, Psychological/genetics , Telomere/genetics , Telomere Shortening/genetics
10.
Int J Neuropsychopharmacol ; 22(7): 453-465, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31188434

ABSTRACT

BACKGROUND: Synapsins are encoded by SYN I, SYN II, and SYN III, and they regulate neurotransmitter release by maintaining a reserve pool of synaptic vesicles. METHODS: Presynaptic dopamine responses to cocaine were examined by microdialysis, and postsynaptic responses were evaluated to various dopamine receptor agonists in the open field with SynI/SynII/SynIII triple knockout mice. RESULTS: Triple knockout mice showed enhanced spontaneous locomotion in a novel environment and were hyper-responsive to indirect and direct D1 and D2 dopamine agonists. Triple knockout animals appeared sensitized to cocaine upon first open field exposure; sensitization developed across days in wild-type controls. When mutants were preexposed to a novel environment before injection, cocaine-stimulated locomotion was reduced and behavioral sensitization retarded. Baseline dopamine turnover was enhanced in mutants and novel open field exposure increased their striatal dopamine synthesis rates. As KCl-depolarization stimulated comparable dopamine release in both genotypes, their readily releasable pools appeared indistinguishable. Similarly, cocaine-induced hyperlocomotion was indifferent to blockade of newly synthesized dopamine and depletion of releasable dopamine pools. Extracellular dopamine release was similar in wild-type and triple knockout mice preexposed to the open field and given cocaine or placed immediately into the arena following injection. Since motor effects to novelty and psychostimulants depend upon frontocortical-striatal inputs, we inhibited triple knockout medial frontal cortex with GABA agonists. Locomotion was transiently increased in cocaine-injected mutants, while their supersensitive cocaine response to novelty was lost. CONCLUSIONS: These results reveal presynaptic dopamine release is not indicative of agonist-induced triple knockout hyperlocomotion. Instead, their novelty response occurs primarily through postsynaptic mechanisms and network effects.


Subject(s)
Central Nervous System Stimulants/pharmacology , Dopamine Agonists/pharmacology , Dopamine/metabolism , Motor Activity/drug effects , Synapses/metabolism , Synapsins/deficiency , Animals , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Extracellular Space/drug effects , Extracellular Space/metabolism , Female , Frontal Lobe/drug effects , Frontal Lobe/metabolism , GABA Agonists/pharmacology , Male , Mice, Inbred C57BL , Mice, Knockout , Microdialysis , Motor Activity/physiology , Synapsins/genetics
11.
Eur J Neurosci ; 45(8): 1085-1101, 2017 04.
Article in English | MEDLINE | ID: mdl-28245069

ABSTRACT

In neurons, intracellular membrane rafts are essential for specific actions of brain-derived neurotrophic factor (BDNF), which include the regulation of axon outgrowth, growth cone turning and synaptic transmission. Virtually, all the actions of BDNF are mediated by binding to its receptor, TrkB. The association of TrkB with the tyrosine kinase, Fyn, is critical for its localization to intracellular membrane rafts. Here, we show that synapsins, a family of highly amphipathic neuronal phosphoproteins, regulate membrane raft lipid composition and consequently, the ability of BDNF to regulate axon/neurite development and potentiate synaptic transmission. In the brains of mice lacking all synapsins, the expression of both BDNF and TrkB were increased, suggesting that BDNF/TrkB-mediated signaling is impaired. Consistent with this finding, synapsin-depleted neurons exhibit altered raft lipid composition, deficient targeting of Fyn to rafts, attenuated TrkB activation, and abrogation of BDNF-stimulated axon outgrowth and synaptic potentiation. Conversely, overexpression of synapsins in neuroblastoma cells results in corresponding reciprocal changes in raft lipid composition, increased localization of Fyn to rafts and promotion of BDNF-stimulated neurite formation. In the presence of synapsins, the ratio of cholesterol to estimated total phospholipids converged to 1, suggesting that synapsins act by regulating the ratio of lipids in intracellular membranes, thereby promoting lipid raft formation. These studies reveal a mechanistic link between BDNF and synapsins, impacting early development and synaptic transmission.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Membrane Microdomains/metabolism , Membrane Potentials/physiology , Neurons/metabolism , Synapses/metabolism , Synapsins/metabolism , Animals , Brain/cytology , Brain/metabolism , Cell Enlargement , Cell Line, Tumor , Cells, Cultured , Cholesterol/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Neuroglia/cytology , Neuroglia/metabolism , Neurons/physiology , Phospholipids/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Receptor, trkB/metabolism , Synapsins/genetics , Synaptic Transmission/physiology
12.
Biol Psychiatry ; 79(2): 78-86, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-25749099

ABSTRACT

BACKGROUND: Telomere shortening and alterations of mitochondrial biogenesis are involved in cellular aging. Childhood adversity is associated with telomere shortening, and several investigations have shown short telomeres in psychiatric disorders. Recent studies have examined whether mitochondria might be involved in neuropsychiatric conditions; findings are limited and no prior work has examined this in relation to stress exposure. METHODS: Two-hundred ninety healthy adults provided information on childhood parental loss and maltreatment and completed diagnostic interviews. Participants were categorized into four groups based upon the presence or absence of childhood adversity and the presence or absence of lifetime psychopathology (depressive, anxiety, and substance use disorders). Telomere length and mitochondrial DNA (mtDNA) copy number were measured from leukocyte DNA by quantitative polymerase chain reaction. RESULTS: Childhood adversity and lifetime psychopathology were each associated with shorter telomeres (p < .01) and higher mtDNA copy numbers (p < .001). Significantly higher mtDNA copy numbers and shorter telomeres were seen in individuals with major depression, depressive disorders, and anxiety disorders, as well as those with parental loss and childhood maltreatment. A history of substance disorders was also associated with significantly higher mtDNA copy numbers. CONCLUSIONS: This study provides the first evidence of an alteration of mitochondrial biogenesis with early life stress and with anxiety and substance use disorders. We replicate prior work on telomere length and psychopathology and show that this effect is not secondary to medication use or comorbid medical illness. Finally, we show that early life stress and psychopathology are each associated with these markers of cellular aging.


Subject(s)
Anxiety Disorders/epidemiology , DNA Copy Number Variations/genetics , DNA, Mitochondrial/genetics , Depressive Disorder, Major/epidemiology , Stress, Psychological/genetics , Substance-Related Disorders/epidemiology , Telomere Shortening/genetics , Adolescent , Adult , Aging/genetics , Biomarkers/metabolism , Cellular Senescence/genetics , Child Abuse , Female , Humans , Male , Middle Aged , Parental Death , Psychiatric Status Rating Scales , Young Adult
13.
Adv Psychosom Med ; 34: 92-108, 2015.
Article in English | MEDLINE | ID: mdl-25832516

ABSTRACT

Telomeres are structures of tandem TTAGGG repeats that are found at the ends of chromosomes and preserve genomic DNA by serving as a disposable buffer to protect DNA termini during chromosome replication. In this process, the telomere itself shortens with each cell division and can consequently be thought of as a cellular 'clock', reflecting the age of a cell and the time until senescence. Telomere shortening and changes in the levels of telomerase, the enzyme that maintains telomeres, occur in the context of certain somatic diseases and in response to selected physical stressors. Emerging evidence indicates that telomeres shorten with exposure to psychosocial stress (including early-life stress) and perhaps in association with some psychiatric disorders. These discoveries suggest that telomere shortening might be a useful biomarker for the overall stress response of an organism to various pathogenic conditions. In this regard, telomeres and their response to both somatic and psychiatric illness could serve as a unifying stress-response biomarker that crosses the brain/body distinction that is often made in medicine. Prospective studies will help to clarify whether this biomarker has broad utility in psychiatry and medicine for the evaluation of responses to psychosocial stressors. The possibility that telomere shortening can be slowed or reversed by psychiatric and psychosocial interventions could represent an opportunity for developing novel preventative and therapeutic approaches.


Subject(s)
Biomarkers/metabolism , Child Abuse , Mental Disorders/metabolism , Stress, Psychological/metabolism , Telomere/metabolism , Child , Humans
14.
Exp Gerontol ; 66: 17-20, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25845980

ABSTRACT

Cellular aging plays a role in longevity and senescence, and has been implicated in medical and psychiatric conditions, including heart disease, cancer, major depression and posttraumatic stress disorder. Telomere shortening and mitochondrial dysfunction are thought to be central to the cellular aging process. The present study examined the association between mitochondrial DNA (mtDNA) copy number and telomere length in a sample of medically healthy adults. Participants (total n=392) were divided into 4 groups based on the presence or absence of early life adversity and lifetime psychopathology: No Adversity/No Disorder, n=136; Adversity/No Disorder, n=91; No Adversity/Disorder, n=46; Adversity/Disorder, n=119. Telomere length and mtDNA copy number were measured using quantitative polymerase chain reaction. There was a positive correlation between mtDNA and telomere length in the entire sample (r=0.120, p<0.001) and in each of the four groups of participants (No Adversity/No Disorder, r=0.291, p=0.001; Adversity/No Disorder r=0.279, p=0.007; No Adversity/Disorder r=0.449, p=0.002; Adversity/Disorder, r=0.558, p<0.001). These correlations remained significant when controlling for age, smoking, and body mass index and establish an association between mtDNA and telomere length in a large group of women and men both with and without early adversity and psychopathology, suggesting co-regulation of telomeres and mitochondrial function. The mechanisms underlying this association may be important in the pathophysiology of age-related medical conditions, such as heart disease and cancer, as well as for stress-associated psychiatric disorders.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial/genetics , Telomere Shortening/genetics , Telomere/genetics , Adolescent , Adult , Adult Survivors of Child Adverse Events , Aging/genetics , Body Mass Index , Cellular Senescence/genetics , Depression , Female , Healthy Volunteers , Humans , Male , Middle Aged , Mitochondria/genetics , Residence Characteristics , Smoking , Young Adult
15.
Histochem Cell Biol ; 141(1): 43-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24150744

ABSTRACT

Ever since its description and the generation of its defining antibody some 20 years ago, NeuN (Neural Nuclei) has been an invaluable tool for developmental neuroscientist sand neuropathologists to identify neurons and follow their normal or malignant development [corrected].The recent identification of the splicing factor Rbfox3 as the molecule constituting the genuine NeuN epitope has opened up a novel perspective on NeuN immunostaining and its interpretation. Here, we briefly review these recent developments, and we provide a series of data that allow to rationalize the specificity of the NeuN/A60 antibody on aldehyde-fixed tissues on the one hand, and its cross-reactivity with Synapsin I and R3hdm2 on Western blots on the other. We argue that rather than being considered as a mere marker for mature neurons, Rbfox3-mediated NeuN/A60 immunoreactivity may provide a window onto neuronal biology. Specifically, we hypothesize that the phosphorylation-dependent antigenicity of the Rbfox3/NeuN epitope should allow to visualize neuronal physiology realized through Rbfox3, including splicing, on the single-cell level.


Subject(s)
Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/pharmacokinetics , Nuclear Proteins/immunology , Nuclear Proteins/pharmacokinetics , Synapsins/immunology , Amino Acid Sequence , Animals , Antibody Specificity , Brain/immunology , Cells, Cultured , Cross Reactions/immunology , DNA-Binding Proteins , Epitopes/immunology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/immunology , Phosphorylation , Sequence Alignment , Synapsins/genetics
16.
BMC Genomics ; 14: 546, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23937070

ABSTRACT

BACKGROUND: Genomic and transcriptomic sequence data are essential tools for tackling ecological problems. Using an approach that combines next-generation sequencing, de novo transcriptome assembly, gene annotation and synthetic gene construction, we identify and cluster the protein families from Favia corals from the northern Red Sea. RESULTS: We obtained 80 million 75 bp paired-end cDNA reads from two Favia adult samples collected at 65 m (Fav1, Fav2) on the Illumina GA platform, and generated two de novo assemblies using ABySS and CAP3. After removing redundancy and filtering out low quality reads, our transcriptome datasets contained 58,268 (Fav1) and 62,469 (Fav2) contigs longer than 100 bp, with N50 values of 1,665 bp and 1,439 bp, respectively. Using the proteome of the sea anemone Nematostella vectensis as a reference, we were able to annotate almost 20% of each dataset using reciprocal homology searches. Homologous clustering of these annotated transcripts allowed us to divide them into 7,186 (Fav1) and 6,862 (Fav2) homologous transcript clusters (E-value ≤ 2e(-30)). Functional annotation categories were assigned to homologous clusters using the functional annotation of Nematostella vectensis. General annotation of the assembled transcripts was improved 1-3% using the Acropora digitifera proteome. In addition, we screened these transcript isoform clusters for fluorescent proteins (FPs) homologs and identified seven potential FP homologs in Fav1, and four in Fav2. These transcripts were validated as bona fide FP transcripts via robust fluorescence heterologous expression. Annotation of the assembled contigs revealed that 1.34% and 1.61% (in Fav1 and Fav2, respectively) of the total assembled contigs likely originated from the corals' algal symbiont, Symbiodinium spp. CONCLUSIONS: Here we present a study to identify the homologous transcript isoform clusters from the transcriptome of Favia corals using a far-related reference proteome. Furthermore, the symbiont-derived transcripts were isolated from the datasets and their contribution quantified. This is the first annotated transcriptome of the genus Favia, a major increase in genomics resources available in this important family of corals.


Subject(s)
Anthozoa/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , RNA Isoforms/genetics , Amino Acid Sequence , Animals , Anthozoa/microbiology , Cluster Analysis , Dinoflagellida/genetics , Evolution, Molecular , Genomics , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , RNA, Messenger/genetics , Sequence Homology, Amino Acid
17.
Behav Brain Res ; 251: 65-74, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23280234

ABSTRACT

Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy.


Subject(s)
Autistic Disorder/genetics , Behavior, Animal/physiology , Social Behavior , Synapsins/genetics , Animals , Disease Models, Animal , Exploratory Behavior/physiology , Grooming/physiology , Male , Mice , Mice, Knockout , Phenotype , Recognition, Psychology/physiology , Social Dominance
18.
Biol Psychiatry ; 73(1): 15-23, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22831981

ABSTRACT

The long-term sequelae of adverse early-life experiences have long been a focus in psychiatry, with a historic neurobiological emphasis on physiological systems that are demonstrably stress-responsive, such as the hypothalamic-pituitary-adrenal axis and neuroimmune function. However, there has been increasing recognition in the general medical literature that such sequelae might encompass more pervasive alterations in health status and physiology. Recent findings in telomere biology have suggested a new avenue for exploring the adverse health effects of childhood maltreatment. Telomere length in proliferative tissues declines with cell replication and the effect can be accelerated by such factors as inflammation, oxidative stress, radiation, and toxins. Reduced telomere length, as a proxy for cellular aging, has been associated with numerous chronic somatic diseases that are generally considered to be diseases of aging, such as diabetes, cancer, and heart disease. More recently, shorter telomeres have been demonstrated in several psychiatric conditions, particularly depression. Sustained psychosocial stress of a variety of types in adulthood appears to be associated with shorter telomeres. Now, emerging work suggests a robust, and perhaps dose-dependent, relationship with early-life stress. These findings present new opportunities to reconceptualize the complex relationships between experience, physical and psychiatric disease, and aging.


Subject(s)
Mental Disorders/genetics , Stress, Psychological/genetics , Telomere Shortening/genetics , Telomere/metabolism , Aging/genetics , Humans
19.
Epilepsy Res ; 99(3): 252-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22236379

ABSTRACT

The highly homologous nerve terminal phosphoproteins synapsin I and synapsin II have been linked to the pathogenesis of epilepsy through associations between synapsin gene mutations and epileptic disease in humans and to the observation of handling induced seizures in mice genetically depleted of one or both of these proteins. Whereas seizure behavior in mice lacking both synapsin I and synapsin II is well characterized, the seizure behavior in mice lacking either is less well studied. Through so called neuroethologically based analyses of fully established seizure behavior in Synapsin 1 and 2 knock-out mice (Syn1KO and Syn2KO mice) aged 4 1/2 months, this study reveals significant differences in the seizure behavior of the two genotypes: whereas Syn1KO mice show both partial and generalized forebrain seizure activity, Syn2KO mice show only fully generalized forebrain seizures. Analysis of seizure behavior at earlier stages shows that the mature seizure pattern in Syn2KO mice establishes rapidly from the age of ∼2 months, when Syn1KO partial seizures are rare, and Syn1KO generalized seizures are almost absent. The specific behavioral phenotypes of the two strains suggest that the slight differences in structure, function and expression of these highly related proteins could be important factors during seizure generating neural activity.


Subject(s)
Seizures/genetics , Seizures/metabolism , Synapsins/deficiency , Animals , Ethology , Mice , Mice, Inbred C57BL , Mice, Knockout , Seizures/diagnosis , Species Specificity , Synapsins/genetics
20.
Semin Cell Dev Biol ; 22(4): 416-24, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21827867

ABSTRACT

Synapsin III was discovered in 1998, more than two decades after the first two synapsins (synapsins I and II) were identified. Although the biology of synapsin III is not as well understood as synapsins I and II, this gene is emerging as an important factor in the regulation of the early stages of neurodevelopment and dopaminergic neurotransmission, and in certain neuropsychiatric illnesses. Molecular genetic and clinical studies of synapsin III have determined that its neurodevelopmental effects are exerted at the levels of neurogenesis and axonogenesis. In vitro voltammetry studies have shown that synapsin III can control dopamine release in the striatum. Since dopaminergic dysfunction is implicated in many neuropsychiatric conditions, one may anticipate that polymorphisms in synapsin III can exert pervasive effects, especially since it is localized to extrasynaptic sites. Indeed, mutations in this gene have been identified in individuals diagnosed with schizophrenia, bipolar disorder and multiple sclerosis. These and other findings indicate that the roles of synapsin III differ significantly from those of synapsins I and II. Here, we focus on the unique roles of the newest synapsin, and where relevant, compare and contrast these with the actions of synapsins I and II.


Subject(s)
Brain/metabolism , Mental Disorders/metabolism , Neurogenesis , Neuronal Plasticity , Synapsins/metabolism , Animals , Humans , Synapsins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...