Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 332: 122123, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37742736

ABSTRACT

AIMS: The aim of this study is to clarify the role of NLRP3 inflammasome in phosphate burden-induced vascular smooth muscle cell (VSMC) calcification. MAIN METHODS: VSMC calcification was induced using a high concentration of inorganic phosphate. After pharmacological inhibition or genetic silencing of the NLRP3 inflammasome, pyroptosis, or potassium efflux, the cells were examined by RT-qPCR, immunofluorescence, and western blotting to identify the NLRP3-mediated pathway for VSMC calcification. KEY FINDINGS: Calcified VSMCs with α-smooth muscle actin (α-SMA) disarray presented features of pyroptosis, including caspase-1 maturation, cleaved gasdermin D (GSDMD), and a high supernatant level of lactate dehydrogenase A. Pharmacological inhibitions of caspase-1 and pyroptosis attenuated VSMC calcification, whereas interleukin-1ß receptor antagonism did not. Unlike canonical NLRP3 activation, osteogenic VSMCs did not upregulate NLRP3 expression. However, NLRP3 genetic silencing or inhibitions, which targets different domains of the NLRP3 protein, could ameliorate VSMC calcification by aborting caspase-1 and GSDMD activation. Furthermore, potassium efflux through the inward-rectifier potassium channel, and not through the P2X7 receptor, triggered NLRP3 inflammasome activation and VSMC calcification. SIGNIFICANCE: In the present study, we identified a potassium efflux-triggered NLRP3-caspase-1-mediated pyroptotic pathway for VSMC calcification that is unique and different from the canonical NLRP3 inflammasome activation. Therefore, targeting this pathway may serve as a novel therapeutic strategy for vascular calcification.

2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835312

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) gene mutations in humans and mice lead to whole-body insulin resistance and partial lipodystrophy. It is unclear whether preserved fat depots in partial lipodystrophy are beneficial for whole-body metabolic homeostasis. We analyzed the insulin response and expression of metabolic genes in the preserved fat depots of PpargC/- mice, a familial partial lipodystrophy type 3 (FPLD3) mouse model resulting from a 75% decrease in Pparg transcripts. Perigonadal fat of PpargC/- mice in the basal state showed dramatic decreases in adipose tissue mass and insulin sensitivity, whereas inguinal fat showed compensatory increases. Preservation of inguinal fat metabolic ability and flexibility was reflected by the normal expression of metabolic genes in the basal or fasting/refeeding states. The high nutrient load further increased insulin sensitivity in inguinal fat, but the expression of metabolic genes became dysregulated. Inguinal fat removal resulted in further impairment of whole-body insulin sensitivity in PpargC/- mice. Conversely, the compensatory increase in insulin sensitivity of the inguinal fat in PpargC/- mice diminished as activation of PPARγ by its agonists restored insulin sensitivity and metabolic ability of perigonadal fat. Together, we demonstrated that inguinal fat of PpargC/- mice plays a compensatory role in combating perigonadal fat abnormalities.


Subject(s)
Insulin Resistance , Lipodystrophy, Familial Partial , PPAR gamma , Animals , Humans , Mice , Insulin/metabolism , Insulin/pharmacology , Insulin Resistance/genetics , Lipodystrophy, Familial Partial/genetics , Mutation , PPAR gamma/genetics , PPAR gamma/metabolism
4.
J Biomed Sci ; 28(1): 22, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33781257

ABSTRACT

BACKGROUND: Obesity-related cardiovascular risk, end points, and mortality are strongly related to arterial stiffening. Current therapeutic approaches for arterial stiffening are not focused on direct targeting within the vessel. Perivascular adipose tissue (PVAT) surrounding the artery has been shown to modulate vascular function and inflammation. Peroxisome proliferator-activated receptor γ (PPARγ) activation significantly decreases arterial stiffness and inflammation in diabetic patients with coronary artery disease. Thus, we hypothesized that PPARγ activation alters the PVAT microenvironment, thereby creating a favorable environment for the attenuation of arterial stiffening in obesity. METHODS: Obese ob/ob mice were used to investigate the effect of PPARγ activation on the attenuation of arterial stiffening. Various cell types, including macrophages, fibroblasts, adipocytes, and vascular smooth muscle cells, were used to test the inhibitory effect of pioglitazone, a PPARγ agonist, on the expression of elastolytic enzymes. RESULTS: PPARγ activation by pioglitazone effectively attenuated arterial stiffening in ob/ob mice. This beneficial effect was not associated with the repartitioning of fat from or changes in the browning of the PVAT depot but was strongly related to improvement of the PVAT microenvironment, as evidenced by reduction in the expression of pro-inflammatory and pro-oxidative factors. Pioglitazone treatment attenuated obesity-induced elastin fiber fragmentation and elastolytic activity and ameliorated the obesity-induced upregulation of cathepsin S and metalloproteinase 12, predominantly in the PVAT. In vitro, pioglitazone downregulated Ctss and Mmp12 in macrophages, fibroblasts, and adipocytes-cell types residing within the adventitia and PVAT. Ultimately, several PPARγ binding sites were found in Ctss and Mmp12 in Raw 264.7 and 3T3-L1 cells, suggesting a direct regulatory mechanism by which PPARγ activation repressed the expression of Ctss and Mmp-12 in macrophages and fibroblasts. CONCLUSIONS: PPARγ activation attenuated obesity-induced arterial stiffening and reduced the inflammatory and oxidative status of PVAT. The improvement of the PVAT microenvironment further contributed to the amelioration of elastin fiber fragmentation, elastolytic activity, and upregulated expression of Ctss and Mmp12. Our data highlight the PVAT microenvironment as an important target against arterial stiffening in obesity and provide a novel strategy for the potential clinical use of PPARγ agonists as a therapeutic against arterial stiffness through modulation of PVAT function.


Subject(s)
Adipose Tissue/physiopathology , Hypoglycemic Agents/pharmacology , Obesity/physiopathology , PPAR gamma/agonists , Pioglitazone/pharmacology , Vascular Stiffness/physiology , 3T3 Cells , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...