Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Mol Cancer Ther ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641411

ABSTRACT

Although patient-derived xenografts (PDXs) are commonly used for preclinical modeling in cancer research, a standard approach to in vivo tumor growth analysis and assessment of antitumor activity is lacking, complicating comparison of different studies and determination of whether a PDX experiment has produced evidence needed to consider a new therapy promising. We present consensus recommendations for assessment of PDX growth and antitumor activity, providing public access to a suite of tools for in vivo growth analyses. We expect that harmonizing PDX study design and analysis and access to a suite of analytical tools will enhance information exchange and facilitate identification of promising novel therapies and biomarkers for guiding cancer therapy.

2.
Res Sq ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38645014

ABSTRACT

We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.

3.
Gut ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365278

ABSTRACT

BACKGROUND: Inflammatory and metabolic biomarkers have been associated with hepatocellular cancer (HCC) risk in phases I and II biomarker studies. We developed and internally validated a robust metabolic biomarker panel predictive of HCC in a longitudinal phase III study. METHODS: We used data and banked serum from a prospective cohort of 2266 adult patients with cirrhosis who were followed until the development of HCC (n=126). We custom designed a FirePlex immunoassay to measure baseline serum levels of 39 biomarkers and established a set of biomarkers with the highest discriminatory ability for HCC. We performed bootstrapping to evaluate the predictive performance using C-index and time-dependent area under the receiver operating characteristic curve (AUROC). We quantified the incremental predictive value of the biomarker panel when added to previously validated clinical models. RESULTS: We identified a nine-biomarker panel (P9) with a C-index of 0.67 (95% CI 0.66 to 0.67), including insulin growth factor-1, interleukin-10, transforming growth factor ß1, adipsin, fetuin-A, interleukin-1 ß, macrophage stimulating protein α chain, serum amyloid A and TNF-α. Adding P9 to our clinical model with 10 factors including AFP improved AUROC at 1 and 2 years by 4.8% and 2.7%, respectively. Adding P9 to aMAP score improved AUROC at 1 and 2 years by 14.2% and 7.6%, respectively. Adding AFP L-3 or DCP did not change the predictive ability of the P9 model. CONCLUSIONS: We identified a panel of nine serum biomarkers that is independently associated with developing HCC in cirrhosis and that improved the predictive ability of risk stratification models containing clinical factors.

4.
bioRxiv ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37905039

ABSTRACT

Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that the HOX/CUT transcription factor ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 targets include the glucocorticoid receptor and the NE splicing factor SRRM4, among others. OC2 regulates gene expression by promoter binding, enhancement of chromatin accessibility, and formation of novel super-enhancers. OC2 also activates glucuronidation genes that irreversibly disable androgen, thereby evoking phenotypic heterogeneity indirectly by hormone depletion. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC. Our findings support enhanced efforts to therapeutically target this protein as a means of suppressing treatment-resistant disease.

5.
Cancer Cell ; 40(12): 1448-1453, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36270276

ABSTRACT

3D patient tumor avatars (3D-PTAs) hold promise for next-generation precision medicine. Here, we describe the benefits and challenges of 3D-PTA technologies and necessary future steps to realize their potential for clinical decision making. 3D-PTAs require standardization criteria and prospective trials to establish clinical benefits. Innovative trial designs that combine omics and 3D-PTA readouts may lead to more accurate clinical predictors, and an integrated platform that combines diagnostic and therapeutic development will accelerate new treatments for patients with refractory disease.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/diagnosis , Precision Medicine , Prospective Studies , Medical Oncology
6.
Cancer Res ; 82(16): 2848-2859, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35731919

ABSTRACT

African-American (AA) men are more likely to be diagnosed with and die from prostate cancer than European American (EA) men. Despite the central role of the androgen receptor (AR) transcription factor in prostate cancer, little is known about the contribution of epigenetics to observed racial disparities. We performed AR chromatin immunoprecipitation sequencing on primary prostate tumors from AA and EA men, finding that sites with greater AR binding intensity in AA relative to EA prostate cancer are enriched for lipid metabolism and immune response genes. Integration with transcriptomic and metabolomic data demonstrated coinciding upregulation of lipid metabolism gene expression and increased lipid levels in AA prostate cancer. In a metastatic prostate cancer cohort, upregulated lipid metabolism associated with poor prognosis. These findings offer the first insights into ancestry-specific differences in the prostate cancer AR cistrome. The data suggest a model whereby increased androgen signaling may contribute to higher levels of lipid metabolism, immune response, and cytokine signaling in AA prostate tumors. Given the association of upregulated lipogenesis with prostate cancer progression, our study provides a plausible biological explanation for the higher incidence and aggressiveness of prostate cancer observed in AA men. SIGNIFICANCE: With immunotherapies and inhibitors of metabolic enzymes in clinical development, the altered lipid metabolism and immune response in African-American men provides potential therapeutic opportunities to attenuate racial disparities in prostate cancer.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Black or African American/genetics , Humans , Immunity , Lipid Metabolism/genetics , Male , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Up-Regulation
7.
NAR Cancer ; 4(2): zcac014, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35475145

ABSTRACT

We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI's Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials.

8.
Cancer Lett ; 531: 71-82, 2022 04 10.
Article in English | MEDLINE | ID: mdl-35122875

ABSTRACT

The largest US cancer health disparity exists in prostate cancer, with Black men having more than a two-fold increased risk of dying from prostate cancer compared to all other races. This disparity is a result of a complex network of factors including socioeconomic status (SES), environmental exposures, and genetics/biology. Inequity in the US healthcare system has emerged as a major driver of disparity in prostate cancer outcomes and has raised concerns that the actual incidence rates may be higher than current estimates. However, emerging studies argue that equalizing healthcare access will not fully eliminate racial health disparities and highlight the important role of biology. Significant differences have been observed in prostate cancer biology between ancestral groups that may contribute to prostate cancer health disparities. Notably, relative to White men, Black men with prostate cancer exhibit increased androgen receptor signaling, genomic instability, metabolic dysregulation, and inflammatory and cytokine signaling. Immediate actions are needed to increase multi-center, interdisciplinary research to bridge the gap between social and biological determinants of prostate cancer health disparities.


Subject(s)
Prostatic Neoplasms , White People , Black or African American/genetics , Genomics , Health Status Disparities , Healthcare Disparities , Humans , Male , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Socioeconomic Factors , White People/genetics
9.
Prostate Cancer Prostatic Dis ; 25(2): 366-369, 2022 02.
Article in English | MEDLINE | ID: mdl-35022600

ABSTRACT

BACKGROUND: The site of prostate cancer metastasis is an important predictor of oncologic outcomes, however, the clinicogenomic characteristics associated with the site are not well-defined. Herein, we characterize the genomic alterations associated with the metastatic site of prostate cancer. METHODS: We analyzed clinical and genomic data from prostate cancer patients with metastatic disease and known metastatic sites from publicly available targeted sequencing data. RESULTS: Prostate cancer metastasis to the liver versus other sites of metastasis conferred a high hazard for death in patients with metastatic prostate cancer (HR: 3.96, 95% CI: 2.4-6.5, p < 0.0001). Genomic analysis of metastatic tissues of prostate cancer-specific genes demonstrated that liver metastases were more enriched with MYC amplification (29.5% vs. 9.8%, FDR = 0.001), PTEN deletion (42% vs. 20.8%, FDR = 0.005), and PIK3CB amplification (8.2% vs. 0.9, FDR = 0.005) compared to other sites. No point mutations were significantly associated with liver metastasis compared to other metastatic sites. CONCLUSION: Liver metastases in prostate cancer are associated with poor survival and aggressive genomic features, including MYC-amplification, PTEN-deletion, and PIK3CB-amplification. These findings could have prognostic, treatment, and trial implications.


Subject(s)
Liver Neoplasms , Prostatic Neoplasms , Humans , Liver Neoplasms/genetics , Male , Prognosis , Prostate/pathology , Prostatic Neoplasms/pathology
10.
Endocr Relat Cancer ; 29(1): 15-31, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34636746

ABSTRACT

Castration-resistant prostate cancer (CRPC) remains highly lethal and in need of novel, actionable therapeutic targets. The pioneer factor GATA2 is a significant prostate cancer (PC) driver and is linked to poor prognosis. GATA2 directly promotes androgen receptor (AR) gene expression (both full-length and splice-variant) and facilitates AR binding to chromatin, recruitment of coregulators, and target gene transcription. Unfortunately, there is no clinically applicable GATA2 inhibitor available at the moment. Using a bioinformatics algorithm, we screened in silico 2650 clinically relevant drugs for a potential GATA2 inhibitor. Validation studies used cytotoxicity and proliferation assays, global gene expression analysis, RT-qPCR, reporter assay, reverse phase protein array analysis (RPPA), and immunoblotting. We examined target engagement via cellular thermal shift assay (CETSA), ChIP-qPCR, and GATA2 DNA-binding assay. We identified the vasodilator dilazep as a potential GATA2 inhibitor and confirmed on-target activity via CETSA. Dilazep exerted anticancer activity across a broad panel of GATA2-dependent PC cell lines in vitro and in a PDX model in vivo. Dilazep inhibited GATA2 recruitment to chromatin and suppressed the cell-cycle program, transcriptional programs driven by GATA2, AR, and c-MYC, and the expression of several oncogenic drivers, including AR, c-MYC, FOXM1, CENPF, EZH2, UBE2C, and RRM2, as well as of several mediators of metastasis, DNA damage repair, and stemness. In conclusion, we provide, via an extensive compendium of methodologies, proof-of-principle that a small molecule can inhibit GATA2 function and suppress its downstream AR, c-MYC, and other PC-driving effectors. We propose GATA2 as a therapeutic target in CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Cell Line, Tumor , Chromatin , Dilazep/therapeutic use , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Oncogenes , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/metabolism
11.
Cancer Genet ; 258-259: 61-68, 2021 11.
Article in English | MEDLINE | ID: mdl-34551377

ABSTRACT

BACKGROUND: High tumor mutation burden (TMB) and total mutation count (TMC) can be predictive of better response to immune checkpoint blockade (ICB). Nevertheless, TMB and TMC are limited by variation across cancers and inconsistent definitions due to different profiling methods (targeted vs whole genome sequencing). Our objective was to identify genomic alterations (GAs) associated with ICB response and builds a novel genomic signature predictive of ICB response, independent of TMB/TMC. METHODS: This was a pan-cancer next generation sequencing (NGS)-association study using January 2014-May 2016 data from AACR Project Genomics Evidence Neo-plasia Information Exchange (GENIE). Participants included 6619 patients with metastatic or un-resectable cancer across 9 cancer types (including 1572 ICB-treated patients). GA data was collected using next-generation sequencing (NGS) assays and downloaded from cbioportal.org. Predictive analyses for ICB response were performed to develop the signature (ImmGA). RESULTS: GAs in 16 genes were associated with improved OS in ICB-treated patients (p < 0.005). 13 GAs were associated with an OS benefit in ICB-treated patients (Pinteraction < 0.05); these genes composed the ImmGA signature. High ImmGA score (≥2 alterations out of 13 predictive GAs) was associated with better OS in ICB-treated patients (AHR:0.67, 95%CI [0.6-0.75], p = 1.4e-12), even after accounting for TMC (Pinteraction = 8e-16). High ImmGA was associated with better OS in ICB-treated patients across most cancers and across different ICB treatment modalities. CONCLUSION: A novel signature predictive of ICB response (ImmGA) was developed from 13 GAs. Further investigation of the utility of ImmGA for treatment and trial selection is warranted.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Nucleotide Sequencing/methods , Immune Checkpoint Inhibitors/therapeutic use , Mutation , Neoplasms/pathology , Follow-Up Studies , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Prognosis , Survival Rate
12.
Endocr Relat Cancer ; 28(8): T19-T38, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34128827

ABSTRACT

Based on pioneering work by Huggins, Hodges and others, hormonal therapies have been established as an effective approach for advanced prostate cancer (PC) for the past eight decades. However, it quickly became evident that androgen deprivation therapy (ADT) via surgical or medical castration accomplishes inadequate inhibition of the androgen receptor (AR) axis, with clinical resistance inevitably emerging due to adrenal and intratumoral sources of androgens and other mechanisms. Early efforts to augment ADT by adding adrenal-targeting agents (aminoglutethimide, ketoconazole) or AR antagonists (flutamide, bicalutamide, nilutamide, cyproterone) failed to achieve overall survival (OS) benefits, although they did exhibit some evidence of limited clinical activity. More recently, four new androgen receptor signaling inhibitors (ARSIs) successfully entered clinical practice. Specifically, the CYP17 inhibitor abiraterone acetate and the second generation AR antagonists (enzalutamide, apalutamide and darolutamide) achieved OS benefits for PC patients, confirmed the importance of reactivated AR signaling in castration-resistant PC and validated important concepts that had been proposed in the field several decades ago but had remained so far unproven, including adrenal-targeted therapy and combined androgen blockade. The past decade has seen steady advances toward more comprehensive AR axis targeting. Now the question is raised whether we have accomplished the maximum AR axis inhibition possible or there is still room for improvement. This review, marking the 80-year anniversary of ADT and 10-year anniversary of successful ARSIs, examines their current clinical use and discusses future directions, in particular combination regimens, to maximize their efficacy, delay emergence of resistance and improve patient outcomes.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Androgen Antagonists/therapeutic use , Androgen Receptor Antagonists/therapeutic use , Androgens , Castration , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy
14.
J Med Chem ; 63(9): 4716-4731, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32314924

ABSTRACT

Histone acetyltransferase (HAT) p300 and its paralog CBP acetylate histone lysine side chains and play critical roles in regulating gene transcription. The HAT domain of p300/CBP is a potential drug target for cancer. Through compound screening and medicinal chemistry, novel inhibitors of p300/CBP HAT with their IC50 values as low as 620 nM were discovered. The most potent inhibitor is competitive against histone substrates and exhibits a high selectivity for p300/CBP. It inhibited cellular acetylation and had strong activity with EC50 of 1-3 µM against proliferation of several tumor cell lines. Gene expression profiling in estrogen receptor (ER)-positive breast cancer MCF-7 cells showed that inhibitor treatment recapitulated siRNA-mediated p300 knockdown, inhibited ER-mediated gene transcription, and suppressed expression of numerous cancer-related gene signatures. These results demonstrate that the inhibitor is not only a useful probe for biological studies of p300/CBP HAT but also a pharmacological lead for further drug development targeting cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Thiophenes/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Acetylation/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/metabolism , p300-CBP Transcription Factors/metabolism
15.
Prostate ; 80(2): 113-132, 2020 02.
Article in English | MEDLINE | ID: mdl-31825540

ABSTRACT

INTRODUCTION: The 2019 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Prostate Cancer Research: The Next Generation," was held 20 to 23 June, 2019, in Los Angeles, California. METHODS: The CHPCA Meeting is an annual conference held by the Prostate Cancer Foundation, that is uniquely structured to stimulate intense discussion surrounding topics most critical to accelerating prostate cancer research and the discovery of new life-extending treatments for patients. The 7th Annual CHPCA Meeting was attended by 86 investigators and concentrated on many of the most promising new treatment opportunities and next-generation research technologies. RESULTS: The topics of focus at the meeting included: new treatment strategies and novel agents for targeted therapies and precision medicine, new treatment strategies that may synergize with checkpoint immunotherapy, next-generation technologies that visualize tumor microenvironment (TME) and molecular pathology in situ, multi-omics and tumor heterogeneity using single cells, 3D and TME models, and the role of extracellular vesicles in cancer and their potential as biomarkers. DISCUSSION: This meeting report provides a comprehensive summary of the talks and discussions held at the 2019 CHPCA Meeting, for the purpose of globally disseminating this knowledge and ultimately accelerating new treatments and diagnostics for patients with prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Animals , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism
16.
Transl Cancer Res ; 8(Suppl 2): S198-S203, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31360645
17.
Trends Endocrinol Metab ; 29(6): 366-368, 2018 06.
Article in English | MEDLINE | ID: mdl-29605661

ABSTRACT

Androgen receptor signaling is critical for prostate adenocarcinoma, even after androgen deprivation therapy. Persistence of intratumoral androgens has been found in castration-resistant prostate cancer and attributed to increased in situ synthesis. Recently, Sharifi and colleagues reported an additional mechanism that can enhance local androgenic exposure: downregulation of an androgen-inactivating enzyme.


Subject(s)
Androgens , Receptors, Androgen/genetics , Down-Regulation/drug effects , Humans , Male , Peroxisomal Multifunctional Protein-2 , Prostatic Neoplasms , Prostatic Neoplasms, Castration-Resistant , Protein Isoforms
18.
Invest Ophthalmol Vis Sci ; 59(1): 132-143, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29332125

ABSTRACT

Purpose: Uveal melanoma (UM) is uniformly refractory to all available systemic chemotherapies, thus creating an urgent need for novel therapeutics. In this study, we investigated the sensitivity of UM cells to ICG-001, a small molecule reported to suppress the Wnt/ß-catenin-mediated transcriptional program. Methods: We used a panel of UM cell lines to examine the effects of ICG-001 on cellular proliferation, migration, and gene expression. In vivo efficacy of ICG-001 was evaluated in a UM xenograft model. Results: ICG-001 exerted strong antiproliferative activity against UM cells, leading to cell cycle arrest, apoptosis, and inhibition of migration. Global gene expression profiling revealed strong suppression of genes associated with cell cycle proliferation, DNA replication, and G1/S transition. Gene set enrichment analysis revealed that ICG-001 suppressed Wnt, mTOR, and MAPK signaling. Strikingly, ICG-001 suppressed the expression of genes associated with UM aggressiveness, including CDH1, CITED1, EMP1, EMP3, SDCBP, and SPARC. Notably, the transcriptomic footprint of ICG-001, when applied to a UM patient dataset, was associated with better clinical outcome. Lastly, ICG-001 exerted anticancer activity against a UM tumor xenograft in mice. Conclusions: Using in vitro and in vivo experiments, we demonstrate that ICG-001 has strong anticancer activity against UM cells and suppresses transcriptional programs critical for the cancer cell. Our results suggest that ICG-001 holds promise and should be examined further as a novel therapeutic agent for UM.


Subject(s)
Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Genes, Neoplasm/genetics , Melanoma/drug therapy , Neoplasms, Experimental , Pyrimidinones/pharmacology , Uveal Neoplasms/drug therapy , Animals , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Melanoma/genetics , Melanoma/metabolism , Mice, Nude , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism
19.
Trends Biochem Sci ; 37(11): 477-83, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22944281

ABSTRACT

Eukaryotes are constantly fine-tuning their gene expression programs in response to the demands of the environment and the availability of nutrients. Such dynamic regulation of the genome necessitates versatile chromatin architecture. Rapid changes in transcript levels are brought about via a wide range of post-translational modifications of the histone proteins that control chromatin structure. Many enzymes responsible for these modifications have been identified and they require various metabolic cofactors or substrates for their activity. Herein, we highlight recent developments that have begun to reveal particular cellular metabolites that might in fact be underappreciated regulators of gene expression through their ability to modulate particular histone modifications.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation , Metabolome , Animals , Chromatin Assembly and Disassembly , Histones/metabolism , Humans , Protein Processing, Post-Translational
20.
Proc Natl Acad Sci U S A ; 107(50): 21605-10, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21098663

ABSTRACT

Genomic rearrangements are common, occur by largely unknown mechanisms, and can lead to human diseases. We previously demonstrated that some genome rearrangements occur in budding yeast through the fusion of two DNA sequences that contain limited sequence homology, lie in inverted orientation, and are within 5 kb of one another. This inverted repeat fusion reaction forms dicentric chromosomes, which are well-known intermediates to additional rearrangements. We have previously provided evidence indicating that an error of stalled or disrupted DNA replication forks can cause inverted repeat fusion. Here we analyze how checkpoint protein regulatory pathways known to stabilize stalled forks affect this form of instability. We find that two checkpoint pathways suppress inverted repeat fusion, and that their activities are distinguishable by their interactions with exonuclease 1 (Exo1). The checkpoint kinase Rad53 (Chk2) and recombination protein complex MRX(MRN) inhibit Exo1 in one pathway, whereas in a second pathway the ATR-like kinases Mec1 and Tel1, adaptor protein Rad9, and effector kinases Chk1 and Dun1 act independently of Exo1 to prevent inverted repeat fusion. We provide a model that indicates how in Rad53 or MRX mutants, an inappropriately active Exo1 may facilitate faulty template switching between nearby inverted repeats to form dicentric chromosomes. We further investigate the role of Rad53, using hypomorphic alleles of Rad53 and null mutations in Rad9 and Mrc1, and provide evidence that only local, as opposed to global, activity of Rad53 is sufficient to prevent inverted repeat fusion.


Subject(s)
Chromosomes, Fungal/genetics , Exodeoxyribonucleases/metabolism , Gene Rearrangement , Genes, cdc , Inverted Repeat Sequences , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 1 , Checkpoint Kinase 2 , Exodeoxyribonucleases/genetics , Genomic Instability , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...