Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 172(4): 1763-76, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24258793

ABSTRACT

Soybean oil contains high levels of tocopherols which are an important source of vitamin E in human diet. The conversion of γ- to α-tocopherol catalyzed by γ-tocopherol methyltransferase (γ-TMT) is found to be the rate limiting factor in soybean which influences the tocopherol composition. Using Agrobacterium-mediated transformation, we overexpressed the γ-TMT gene of Perilla frutescens under the control of the seed-specific promoter vicillin in cultivar Pusa 16. Transgene integration and expression was confirmed in five independently transformed GUS positive soybean plants by polymerase chain reaction (PCR), Southern hybridization, and reverse transcriptase-PCR (RT-PCR). High-performance liquid chromatography (HPLC) analysis showed that overexpression of Pf-γ-TMT resulted in efficient conversion of γ-tocopherol to α-tocopherol and concomitant increase in seed α-tocopherol content in RT-PCR positive plants. The protocol was successfully applied to three more cultivars PK 416, Gujarat soybean 1, and VL soya 1 in which seeds of transformed plants showed elevated level of α-tocopherol than wild-type seeds.


Subject(s)
Gene Expression Regulation, Plant/genetics , Glycine max/enzymology , Glycine max/metabolism , Methyltransferases/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism , Tocopherols/metabolism , Methyltransferases/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Glycine max/genetics
2.
Plant Cell Rep ; 32(10): 1557-74, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23749098

ABSTRACT

KEY MESSAGE: An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant. Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA(®) and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.


Subject(s)
Agrobacterium tumefaciens , Genetic Engineering/methods , Saccharum/genetics , Seeds/genetics , Acetophenones/chemistry , DNA, Plant/genetics , Gene Transfer Techniques , Genes, Reporter , Genotype , Plants, Genetically Modified/genetics , Sonication , Surface-Active Agents/chemistry , Transformation, Genetic
3.
Protoplasma ; 250(4): 885-98, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23247920

ABSTRACT

Withanolide is one of the most extensively exploited steroidal lactones, which are biosynthesized in Withania somnifera. Its production from cell suspension culture was analyzed to defeat limitations coupled with its regular supply from the plant organs. In order to optimize the different factors for sustainable production of withanolides and biomass accumulations, different concentrations of auxins or cytokinins and their combinations, carbon sources, agitation speed, organic additives and seaweed extracts was studied in cell suspension culture. Maximum biomass accumulation (16.72 g fresh weight [FW] and 4.18 g dry weight [DW]) and withanolides production (withanolide A 7.21 mg/g DW, withanolide B 4.23 mg/g DW, withaferin A 3.88 mg/g DW and withanone 6.72 mg/g DW) were achieved in the treatment of Gracilaria edulis extract at 40 % level. Organic additive L-glutamine at 200 mg/l in combination with picloram (1 mg/l) and KN (0.5 mg/l) promoted growth characteristics (11.87 g FW and 2.96 g DW) and withanolides synthesis (withanolide A 5.04 mg/g DW, withanolide B 2.59 mg/g DW, withaferin A 2.36 mg/g DW and withanone 4.32 mg/g DW). Sucrose at 5 % level revolved out to be a superior carbon source yielded highest withanolides production (withanolide A 2.88 mg/g DW, withanolide B 1.48 mg/g DW, withaferin A 1.35 mg/g DW and withanone 2.47 mg/g DW), whereas biomass (7.28 g FW and 1.82 g DW) was gratefully increased at 2 % level of sucrose in cell suspension culture. This optimized protocol can be utilized for large scale cultivation of W. somnifera cells in industrial bioreactors for mass synthesis of major withanolides.


Subject(s)
Biomass , Cell Culture Techniques/methods , Withania/cytology , Withania/growth & development , Withanolides/metabolism , Carbon/metabolism , Cells, Cultured , Culture Media , Withania/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...