Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645859

ABSTRACT

Previous studies in the B16F10 mouse melanoma model have demonstrated that combining a DNA vaccine comprised of regions of gp100 and tyrosinase-related protein 2 fused to Macrophage-inflammatory protein 3-alpha (MIP3α) with recombinant Interferon alpha (IFN) and 5-Aza-2'-Deoxycytidine (5Aza) treatments resulted in significantly greater anti-tumor activity and immunogenicity in the tumor microenvironment (TME). This brief report details that the combination of vaccine with treatments IFN and 5Aza results in both the upregulation of genes expressing CD11c-interacting proteins and an increase in the TME of a distinct CD11c+ CD8+ T cell population. This cell population correlates with tumor size, is primarily comprised of effector or effector memory T cells, and has a more robust response to ex vivo stimulation as compared to CD11c- CD8+ T cells as measured by surface activation markers 4-1BB (CD137) and KLRG1 (Killer cell lectin-like receptor G1) and intracellular IFNγ production. In conclusion, this combination therapy results in greater presence of highly active effector CD8+ T-cells expressing CD11c in the TME that correlate with and are likely primary contributors to treatment efficacy.

2.
Front Immunol ; 13: 972266, 2022.
Article in English | MEDLINE | ID: mdl-36189260

ABSTRACT

Lengthy tuberculosis (TB) treatment is required to overcome the ability of a subpopulation of persistent Mycobacterium tuberculosis (Mtb) to remain in a non-replicating, antibiotic-tolerant state characterized by metabolic remodeling, including induction of the RelMtb-mediated stringent response. We developed a novel therapeutic DNA vaccine containing a fusion of the relMtb gene with the gene encoding the immature dendritic cell-targeting chemokine, MIP-3α/CCL20. To augment mucosal immune responses, intranasal delivery was also evaluated. We found that intramuscular delivery of the MIP-3α/relMtb (fusion) vaccine or intranasal delivery of the relMtb (non-fusion) vaccine potentiate isoniazid activity more than intramuscular delivery of the DNA vaccine expressing relMtb alone in a chronic TB mouse model (absolute reduction of Mtb burden: 0.63 log10 and 0.5 log10 colony-forming units, respectively; P=0.0002 and P=0.0052), inducing pronounced Mtb-protective immune signatures. The combined approach involving intranasal delivery of the DNA MIP-3α/relMtb fusion vaccine demonstrated the greatest mycobactericidal activity together with isoniazid when compared to each approach alone (absolute reduction of Mtb burden: 1.13 log10, when compared to the intramuscular vaccine targeting relMtb alone; P<0.0001), as well as robust systemic and local Th1 and Th17 responses. This DNA vaccination strategy may be a promising adjunctive approach combined with standard therapy to shorten curative TB treatment, and also serves as proof of concept for treating other chronic bacterial infections.


Subject(s)
Tuberculosis , Vaccines, DNA , Animals , Anti-Bacterial Agents , Dendritic Cells , Isoniazid , Mice
3.
Front Immunol ; 13: 1074644, 2022.
Article in English | MEDLINE | ID: mdl-36741387

ABSTRACT

Introduction: DNA vaccines containing a fusion of the gene encoding chemokine MIP-3α (CCL20), the ligand for CCR6 on immature dendritic cells (DCs), to melanoma-associated antigen genes have enhanced anti-tumor immunity and efficacy compared to those lacking the chemokine gene. Previous work has shown that type-I interferon (IFNα or IFN) and 5-Aza-2'-deoxycytidine (5Aza) significantly enhance the therapeutic benefit of DNA vaccines as measured by reduced tumor burden and improved mouse survival. Methods: Here, we explored mouse intratumoral immune correlates underlying the therapeutic benefit of this combination regimen (vaccine, IFN, and 5Aza) as compared to vaccine alone and IFN and 5Aza without vaccine, focusing on chemokine mRNA expression by qRT-PCR and inflammatory cellular infiltration into the tumor microenvironment (TME) by flow cytometry and immunohistochemistry (IHC). Results: The combination group significantly upregulated intratumoral mRNA expression of key immune infiltration chemokines XCL1 and CXCL10. Flow cytometric analyses of tumor suspensions exhibited greater tumor infiltration of CD8+ DCs, CCR7+ DCs, and NK cells in the combination group, as well as reduced levels of myeloid-derived suppressor cells (MDSCs) in vaccinated groups. The mice receiving combination therapy also had greater proportions of effector/memory T-cells (Tem), in addition to showing an enhanced infiltration of Tem and central memory CD8+ T-cells, (Tcm). Tem and Tcm populations both correlated with smaller tumor size. Immunohistochemical analysis of tumors confirmed that CD8+ cells were more abundant overall and especially in the tumor parenchyma with combination therapy. Discussion: Efficient targeting of antigen to immature DCs with a chemokine-fusion vaccine offers a potential alternative approach to classic and dendritic cell-based vaccines. Combining this approach with IFNα and 5Aza treatments significantly improved vaccine efficacy. This treatment creates an environment of increased inflammatory chemokines that facilitates the trafficking of CD8+ DCs, NK cells, and CD8+ T-cells, especially memory cells, while reducing the number of MDSCs. Importantly, in the combination group, CD8+ cells were more able to penetrate the tumor mass in addition to being more numerous. Further analysis of the pathways engaged by our combination therapy is expected to provide additional insights into melanoma pathogenesis and facilitate the development of novel treatment strategies.


Subject(s)
Cancer Vaccines , Melanoma , Vaccines, DNA , Animals , Mice , Decitabine/pharmacology , Interferon-alpha , RNA, Messenger , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...