Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Physiol Mol Biol Plants ; 29(6): 871-887, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37520805

ABSTRACT

Deployment of single or multiple blast resistance (R) genes in rice plant is considered to be the most promising approach to enhance resistance against blast disease caused by fungus Magnaporthe oryzae. At the proteome level, relatively little information about R gene mediated defence mechanisms for single and stacking resistance characteristics is available. The overall objective of this study is to look at the proteomics of rice plants that have R genes; Pi54, Pi54rh and stacked Pi54 + Pi54rh in response to rice blast infection. In this study 'isobaric tag for relative and absolute quantification' (iTRAQ)-based proteomics analysis was performed in rice plants at 72-h post inoculation with Magnaporthe oryzae and various differentially expressed proteins were identified in these three transgenic lines in comparison to wild type during resistance response to blast pathogen. Through STRING analysis, the observed proteins were further examined to anticipate their linked partners, and it was shown that several defense-related proteins were co-expressed. These proteins can be employed as targets in future rice resistance breeding against Magnaporthe oryzae. The current study is the first to report a proteomics investigation of rice lines that express single blast R gene Pi54, Pi54rh and stacked (Pi54 + Pi54rh) during incompatible interaction with Magnaporthe oryzae. The differentially expressed proteins indicated that secondary metabolites, reactive oxygen species-related proteins, phenylpropanoid, phytohormones and pathogenesis-related proteins have a substantial relationship with the defense response against Magnaporthe oryzae. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01327-3.

2.
Plant Sci ; 324: 111413, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963493

ABSTRACT

The rice Hybrid Proline Rich Protein (HyPRP) encoding gene, OsHyPRP16 expression exhibit early upregulation in response to Magnaporthe oryzae inoculation. Here, we functionally characterized the OsHyPRP16 promoter through deletion analysis in transgenic Arabidopsis using GUS (ß-glucuronidase) reporter assay. The promoter fragments, sequentially deleted from the 5' end could induce differential GUS activity in response to stresses induced by different hormones and abiotic stress conditions. In addition, a strong GUS induction was observed in M. oryzae inoculated transgenic Arabidopsis. Based on the insilico and stress-inducibility of D1 promoter fragment against various phytohormones and rice blast fungus, and with no basal activity under control conditions, we rationally selected D1 promoter fragment to drive the expression of a major rice blast resistance gene; Pi54 in the genetic background of blast susceptible TP309 rice line. The D1 promoter fragment was able to induce the expression of Pi54 at immediate-early stages of M. oryzae infection in transgenic rice. The transgenic plants with Pi54 under the control of D1 promoter fragment displayed complete resistance against M. oryzae infection as compared to control plants. The present study suggests that the D1 fragment of OsHyPRP16 promoter is a valuable tool for breeding and development of rice lines with early-inducible and pathogen-responsive enhanced disease resistance.


Subject(s)
Arabidopsis , Magnaporthe , Oryza , Arabidopsis/genetics , Ascomycota , Disease Resistance/genetics , Glucuronidase/metabolism , Hormones , Magnaporthe/physiology , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Growth Regulators , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Proline
3.
J Fungi (Basel) ; 8(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35736067

ABSTRACT

Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice-M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.

4.
Plant Genome ; 14(3): e20140, 2021 11.
Article in English | MEDLINE | ID: mdl-34498798

ABSTRACT

Plants produce diverse secondary metabolites in response to different environmental cues including pathogens. The modification of secondary metabolites, including acylation, modulates their biological activity, stability, transport, and localization. A plant-specific BAHD-acyltransferase (BAHD-AT) gene family members catalyze the acylation of secondary metabolites. Here we characterized the rice (Oryza sativa L.) BAHD-ATs at the genome-wide level and endeavor to define their plausible role in the tolerance against Rhizoctonia solani AG1-IA. We identified a total of 85 rice OsBAHD-AT genes and classified them into five canonical clades based on their phylogenetic relationship with characterized BAHD-ATs from other plant species. The time-course RNA sequencing (RNA-seq) analysis of OsBAHD-AT genes and qualitative real-time polymerase chain reaction (qRT-PCR) validation showed higher expression in sheath blight susceptible rice genotype. Furthermore, the DNA methylation analysis revealed higher hypomethylation of OsBAHD-AT genes that corresponds to their higher expression in susceptible rice genotype, indicating epigenetic regulation of OsBAHD-AT genes in response to R. solani AG1-IA inoculation. The results shown here indicate that BAHD-ATs may have a negative role in rice tolerance against R. solani AG1-IA possibly mediated through the brassinosteroid (BR) signaling pathway. Altogether, the present analysis suggests the putative functions of several OsBAHD-AT genes, which will provide a blueprint for their functional characterization and to understand the rice-R. solani AG1-IA interaction.


Subject(s)
Oryza , Acyltransferases/genetics , Epigenesis, Genetic , Oryza/genetics , Phylogeny , Plant Diseases/genetics , Rhizoctonia
5.
Plant Physiol Biochem ; 166: 128-139, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34102436

ABSTRACT

Rice blast caused by Magnaporthe oryzae and sheath blight caused by Rhizoctonia solani, are the two major diseases of rice that cause enormous losses in rice production worldwide. Identification and utilization of broad-spectrum resistance resources have been considered sustainable and effective strategies. However, the majority of the resistance genes and QTLs identified have often been found to be race-specific, and their resistance is frequently broken down due to continuous exposure to the pathogen. Therefore, integrated approaches to improve plant resistance against such devastating pathogen have great importance. Silicon (Si), a beneficial element for plant growth, has shown to provide a prophylactic effect against many pathogens. The application of Si helps the plants to combat the disease-causing pathogens, either through its deposition in different parts of the plant or through modulation/induction of specific defense genes by yet an unknown mechanism. Some reports have shown that Si imparts resistance to rice blast and sheath blight. The present review summarizes the mechanism of Si transport and deposition and its effect on rice growth and development. A special emphasis has been given to explore the existing evidence showing Si mediated blast and sheath blight resistance and the mechanism involved in resistance. This review will help to understand the prophylactic effects of Si against sheath blight and blast disease at the mechanical, physiological, and genetic levels. The information provided here will help develop a strategy to explore Si derived benefits for sustainable rice production.


Subject(s)
Oryza , Ascomycota , Disease Resistance , Oryza/genetics , Plant Diseases , Rhizoctonia , Silicon/pharmacology
6.
Physiol Plant ; 171(4): 849-867, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33639002

ABSTRACT

Plants being sessile have evolved numerous mechanisms to meet the changing environmental and growth conditions. Plant pathogens are responsible for devastating disease epidemics in many species. Transporter proteins are an integral part of plant growth and development, and several studies have documented their role in pathogen disease resistance. In this review, we analyze the studies on genome-wide identifications of plant transporters like sugars will eventually be exported transporters (SWEET), multidrug and toxic compound extrusion (MATE) transporters, ATP-binding cassette (ABC) transporters, natural resistance-associated macrophage proteins (NRAMP), and sugar transport proteins (STPs), all having a significant role in plant disease resistance. The mechanism of action of these transporters, their solute specificity, and the potential application of recent molecular biology approaches deploying these transporters for the development of disease-resistant plants are also discussed. The applications of genome editing tools, such as CRIPSR/Cas9, are also presented. Altogether the information included in this article gives a better understanding of the role of transporter proteins during plant-pathogen interaction.


Subject(s)
Disease Resistance , Plant Proteins , Disease Resistance/genetics , Humans , Membrane Transport Proteins/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism
7.
Article in English | MEDLINE | ID: mdl-33014997

ABSTRACT

Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.

8.
Plants (Basel) ; 8(9)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514343

ABSTRACT

Hybrid proline-rich proteins (HyPRPs) belong to the family of 8-cysteine motif (8CM) containing proteins that play important roles in plant development processes, and tolerance to biotic and abiotic stresses. To gain insight into the rice HyPRPs, we performed a systematic genome-wide analysis and identified 45 OsHyPRP genes encoding 46 OsHyPRP proteins. The phylogenetic relationships of OsHyPRP proteins with monocots (maize, sorghum, and Brachypodium) and a dicot (Arabidopsis) showed clustering of the majority of OsHyPRPs along with those from other monocots, which suggests lineage-specific evolution of monocots HyPRPs. Based on our previous RNA-Seq study, we selected differentially expressed OsHyPRPs genes and used quantitative real-time-PCR (qRT-PCR) to measure their transcriptional responses to biotic (Magnaporthe oryzae) and abiotic (heat, cold, and salt) stresses and hormone treatment (Abscisic acid; ABA, Methyl-Jasmonate; MeJA, and Salicylic acid; SA) in rice blast susceptible Pusa Basmati-1 (PB1) and blast-resistant near-isogenic line PB1+Pi9. The induction of OsHyPRP16 expression in response to the majority of stresses and hormonal treatments was highly correlated with the number of cis-regulatory elements present in its promoter region. In silico docking analysis of OsHyPRP16 showed its interaction with sterols of fungal/protozoan origin. The characterization of the OsHyPRP gene family enables us to recognize the plausible role of OsHyPRP16 in stress tolerance.

9.
Int J Mol Sci ; 19(4)2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642631

ABSTRACT

Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host-pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.


Subject(s)
Disease Resistance/genetics , Oryza/genetics , Plant Breeding/methods , Oryza/immunology , Oryza/microbiology
10.
Curr Issues Mol Biol ; 27: 1-36, 2018.
Article in English | MEDLINE | ID: mdl-28885172

ABSTRACT

The history of DNA sequencing dates back to 1970s. During this period the two first generation nucleotide sequencing techniques were developed. Subsequently the Sanger's dideoxy method of sequencing gained popularity over Maxam and Gilbert's chemical method of sequencing. However, in the last decade, we have observed revolutionary changes in DNA sequencing technologies leading to the emergence of next-generation sequencing (NGS) techniques. NGS technologies have enhanced the throughput and speed of sequencing combined with bringing down the overall cost of the process over a time. The major applications of NGS technologies being genome sequencing and resequencing, transcriptomics, metagenomics in relation to plant-microbe interactions, exon and genome capturing, development of molecular markers and evolutionary studies. In this review, we present a broader picture of evolution of NGS tools, its various applications in crop plants, and future prospects of the technology for crop improvement.


Subject(s)
Crops, Agricultural/genetics , DNA, Plant/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Plant Roots/genetics , Plants/genetics , Chromosome Mapping , Chromosomes, Plant/chemistry , Crops, Agricultural/microbiology , DNA, Plant/chemistry , Genetic Markers , Genomics/methods , High-Throughput Nucleotide Sequencing/history , High-Throughput Nucleotide Sequencing/trends , History, 20th Century , History, 21st Century , Metagenomics/methods , Plant Roots/microbiology , Plants/microbiology , Rhizosphere , Symbiosis , Transcriptome
11.
Bioinformation ; 13(8): 249-255, 2017.
Article in English | MEDLINE | ID: mdl-28959093

ABSTRACT

Rice blast disease caused by a fungus Magnaporthae oryzae is one of the most important biotic factors that severely damage the rice crop. Several molecular approaches are now being applied to tackle this issue in rice. It is of interest to study long non-coding RNA (lncRNA) in rice to control the disease. lncRNA, a non-coding transcript that does not encode protein, is known to play an important role in gene regulation of various biological processes. Here we describe a computational pipeline to identify lncRNA from a resistant rice line. The number of lncRNA found in resistant line was 1429, 1927 and 1981 in mock and M. oryzae (ZB13 and Zhong) inoculated samples, respectively. Functional classification of these lncRNA reveals a higher number of long intergenic non-coding RNA compared to antisense lncRNA in both mock and M. oryzae inoculated resistant rice lines. Many intergenic lncRNA candidates were identified from resistant rice line and their role to regulate the resistance mechanism in rice during M. oryzae invasion is implied.

12.
Plant Cell Rep ; 36(11): 1747-1755, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28905253

ABSTRACT

KEY MESSAGE: This is the first report of stacking two major blast resistance genes in blast susceptible rice variety using co-transformation method to widen the resistance spectrum against different isolates of Magnaporthe oryzae. Single resistance (R-) gene mediated approach for the management of rice blast disease has met with frequent breakdown in resistance response. Besides providing the durable resistance, gene pyramiding or stacking also imparts broad spectrum resistance against plant pathogens, including rice blast. In the present study, we stacked two R-genes; Pi54 and Pi54rh having broad spectrum resistance against multiple isolates of Magnaporthe oryzae (M. oryzae). Both Pi54 and Pi54rh expressed under independent promoters were transferred into the blast susceptible japonica rice Taipei 309 (TP309) using particle gun bombardment method. Functional complementation analysis of stacked transgenic rice lines showed higher level of resistance to a set of highly virulent M. oryzae isolates collected from different rice growing regions. qRT-PCR analysis has shown M. oryzae induced expression of both the R-genes in stacked transgenic lines. The present study also demonstrated the effectiveness of the strategy for rapid single step gene stacking using co-transformation approach to engineer durable resistance against rice blast disease and also this is the first report in which two blast R-genes are stacked together using co-transformation approach. The two-gene-stacked transgenic line developed in this study can be used further to understand the molecular aspects of defense-related pathways vis-a-vis single R-gene containing transgenic lines.


Subject(s)
Magnaporthe/pathogenicity , Oryza/microbiology , Disease Resistance/genetics , Disease Resistance/physiology , Oryza/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology
13.
Front Plant Sci ; 8: 93, 2017.
Article in English | MEDLINE | ID: mdl-28280498

ABSTRACT

Magnaporthe oryzae infection causes rice blast, a destructive disease that is responsible for considerable decrease in rice yield. Development of resistant varieties via introgressing resistance genes with marker-assisted breeding can eliminate pesticide use and minimize crop losses. Here, resistant near-isogenic line (NIL) of Pusa Basmati-1(PB1) carrying broad spectrum rice blast resistance gene Pi9 was used to investigate Pi9-mediated resistance response. Infected and uninfected resistant NIL and susceptible control line were subjected to RNA-Seq. With the exception of one gene (Pi9), transcriptional signatures between the two lines were alike, reflecting basal similarities in their profiles. Resistant and susceptible lines possessed 1043 (727 up-regulated and 316 down-regulated) and 568 (341 up-regulated and 227 down-regulated) unique and significant differentially expressed loci (SDEL), respectively. Pathway analysis revealed higher transcriptional activation of kinases, WRKY, MYB, and ERF transcription factors, JA-ET hormones, chitinases, glycosyl hydrolases, lipid biosynthesis, pathogenesis and secondary metabolism related genes in resistant NIL than susceptible line. Singular enrichment analysis demonstrated that blast resistant NIL is significantly enriched with genes for primary and secondary metabolism, response to biotic stimulus and transcriptional regulation. The co-expression network showed proteins of genes in response to biotic stimulus interacted in a manner unique to resistant NIL upon M. oryzae infection. These data suggest that Pi9 modulates genome-wide transcriptional regulation in resistant NIL but not in susceptible PB1. We successfully used transcriptome profiling to understand the molecular basis of Pi9-mediated resistance mechanisms, identified potential candidate genes involved in early pathogen response and revealed the sophisticated transcriptional reprogramming during rice-M. oryzae interactions.

14.
Front Public Health ; 2: 204, 2014.
Article in English | MEDLINE | ID: mdl-25405147

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a global cause of both hospital and community-acquired infection. This retrospective, observational study determined the prevalence of MRSA carriers in cardiothoracic and neurological surgical patients presenting to an outpatient preoperative assessment center in Columbus, OH. Aggressive skin and soft-tissue infection may be caused by MRSA with potentially fatal complications. Cardiothoracic and neurological surgical patients are at high risk for surgical-site infection. Results indicated that 4.25% of the sample carried MRSA and 25.25% carried methicillin-sensitive S. aureus.

15.
J Investig Med High Impact Case Rep ; 2(4): 2324709614553669, 2014.
Article in English | MEDLINE | ID: mdl-26425624

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder involving the abnormal communication of vascular structures. HHT typically presents with recurrent epistaxis and telangiectasis of the nasal and buccal mucosa, tongue, and lips. More serious manifestations of this disease include cerebral, pulmonary, gastrointestinal, and hepatic arteriovenous malformations. This case report details a 55-year-old male with HHT undergoing a five-box maze procedure for curative treatment of atrial fibrillation. Particular anesthetic considerations are described to reduce morbidity and mortality in this patient population.

16.
Sci Rep ; 3: 1022, 2013.
Article in English | MEDLINE | ID: mdl-23289064

ABSTRACT

The present work was conducted to understand the basis of adaptation in Caragana jubata in its niche environment at high altitude cold desert of Himalaya. Molecular data showed predominance of genes encoding chaperones and those involved in growth and development at low temperature (LT), a major cue operative at high altitude. Importantly, these genes expressed in C. jubata in its natural habitat. Their homologues in Arabidopsis thaliana, Oryza sativa, and Glycine max did not exhibit similar trend of gene expression at LT. Constitutive expression and a quick up-regulation of the above genes suggested the ability of C. jubata to adjust its cellular machinery to maintain growth and development in its niche. This was reflected in LT(50 )(the temperature at which 50% injury occurred) and LT mediated photosynthetic acclimatory response. Such molecular and physiological plasticity enables C. jubata to thrive in the high altitude cold desert of Himalayas.

17.
J Org Chem ; 69(23): 8118-20, 2004 Nov 12.
Article in English | MEDLINE | ID: mdl-15527301

ABSTRACT

One-pot montmorillonite K-10 clay supported reactions of either salicylaldehyde/2-hydroxyacetophenone hydrazones and aryl-/alkylureas or salicylaldehydes/2-hydroxyacetophenone and 4-aryl-/alkylsemicarbazides expeditiously yield 3,4-dihydro-4-hydrazino-2H-benz[e]-1,3-oxazin-2-ones (9) via cycloisomerization of the intermediate salicylaldehyde/2-hydroxyacetophenone 4-aryl-/alkylsemicarbazones (5) under solvent-free microwave irradiation. Under the same conditions, hydrazines (9) readily underwent reductive dehydrazination on alumina-supported copper(II) sulfate to furnish 2H-benz[e]-1,3-oxazin-2-ones (10).


Subject(s)
Aldehydes/chemistry , Benzoxazines/chemical synthesis , Catalysis , Hydrazones/chemistry , Indicators and Reagents , Magnetic Resonance Spectroscopy , Molecular Structure , Pharmaceutical Preparations
18.
J Voice ; 18(1): 138-45, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15070234

ABSTRACT

In this study, we evaluated the relationship between laryngeal function measures and glottal gap ratio and normalized measures of supraglottic behaviors in patients with unilateral vocal fold paresis (UVFP). Thirty-one patients were found to have unilateral vocal fold paresis by videoendoscopy and laryngeal electromyography, and 13 controls participated in this study. Patients with UVFP demonstrated significantly larger glottal gap ratios (p = 0.016) than control subjects. The nonparalyzed or contralateral vocal fold was associated with significantly more static false vocal fold compression (p = 0.03) compared with the paralyzed vocal fold or with the controls. Patients with unilateral vocal fold paresis were divided into subgroups: those with normal or abnormal maximum phonation time, flow, or pressure measures. Smaller glottal gap ratios were identified in patients with normal maximum phonation times and flow measures. Greater false vocal fold activity was identified in unilateral vocal fold paresis patients with normal laryngeal function measures than in unilateral vocal fold paresis patients with abnormal measures. These findings suggest that some patients with documented unilateral paresis and glottal incompetence can compensate for vocal fold weakness such that their acoustic and aerodynamic measures are normal.


Subject(s)
Glottis/physiopathology , Vocal Cord Paralysis/physiopathology , Adult , Aged , Aged, 80 and over , Case-Control Studies , Electromyography , Female , Humans , Image Processing, Computer-Assisted , Laryngoscopy , Male , Middle Aged , Phonation/physiology , Vibration , Videotape Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...