Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 30(7): 1293-1306, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38277241

ABSTRACT

PURPOSE: Tax-interacting protein 1 (TIP1) is a cancer-specific radiation-inducible cell surface antigen that plays a role in cancer progression and resistance to therapy. This study aimed to develop a novel anti-TIP1 human antibody for noninvasive PET imaging in patients with cancer. EXPERIMENTAL DESIGN: A phage-displayed single-chain variable fragment (scFv) library was created from healthy donors' blood. High-affinity anti-TIP1 scFvs were selected from the library and engineered to human IgG1. Purified Abs were characterized by size exclusion chromatography high-performance liquid chromatography (SEC-HPLC), native mass spectrometry (native MS), ELISA, BIAcore, and flow cytometry. The labeling of positron emitter [89Zr]Zr to the lead Ab, L111, was optimized using deferoxamine (DFO) chelator. The stability of [89Zr]Zr-DFO-L111 was assessed in human serum. Small animal PET studies were performed in lung cancer tumor models (A549 and H460). RESULTS: We obtained 95% pure L111 by SEC-HPLC. Native MS confirmed the intact mass and glycosylation pattern of L111. Conjugation of three molar equivalents of DFO led to the optimal DFO-to-L111 ratio of 1.05. Radiochemical purity of 99.9% and specific activity of 0.37 MBq/µg was obtained for [89Zr]Zr-DFO-L111. [89Zr]Zr-DFO-L111 was stable in human serum over 7 days. The immunoreactive fraction in cell surface binding studies was 96%. In PET, preinjection with 4 mg/kg cold L111 before [89Zr]Zr-DFO-L111 (7.4 MBq; 20 µg) significantly (P < 0.01) enhanced the tumor-to-muscle standard uptake values (SUVmax) ratios on day 5 compared with day 2 postinjection. CONCLUSIONS: L111 Ab targets lung cancer cells in vitro and in vivo. [89Zr]Zr-DFO-L111 is a human antibody that will be evaluated in the first in-human study of safety and PET imaging.


Subject(s)
Lung Neoplasms , Single-Chain Antibodies , Animals , Humans , Radioisotopes/chemistry , Zirconium/chemistry , Deferoxamine/chemistry , Positron-Emission Tomography/methods , Lung Neoplasms/diagnostic imaging , Cell Line, Tumor
2.
Biomed Pharmacother ; 166: 115341, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625322

ABSTRACT

Non-small-cell lung cancer (NSCLC) and glioblastoma (GB) have poor prognoses. Discovery of new molecular targets is needed to improve therapy. Tax interacting protein 1 (TIP1), which plays a role in cancer progression, is overexpressed and radiation-inducible in NSCLC and GB. We evaluated the effect of an anti-TIP1 antibody alone and in combination with ionizing radiation (XRT) on NSCLC and GB in vitro and in vivo. NSCLC and GB cells were treated with anti-TIP1 antibodies and evaluated for proliferation, colony formation, endocytosis, and cell death. The efficacy of anti-TIP1 antibodies in combination with XRT on tumor growth was measured in mouse models of NSCLC and GB. mRNA sequencing was performed to understand the molecular mechanisms involved in the action of anti-TIP1 antibodies. We found that targeting the functional domain of TIP1 leads to endocytosis of the anti-TIP1 antibody followed by reduced proliferation and increased apoptosis-mediated cell death. Anti-TIP1 antibodies bound specifically (with high affinity) to cancer cells and synergized with XRT to significantly increase cytotoxicity in vitro and reduce tumor growth in mouse models of NSCLC and GB. Importantly, downregulation of cancer survival signaling pathways was found in vitro and in vivo following treatment with anti-TIP1 antibodies. TIP1 is a new therapeutic target for cancer treatment. Antibodies targeting the functional domain of TIP1 exhibited antitumor activity and enhanced the efficacy of radiation both in vitro and in vivo. Anti-TIP1 antibodies interrupt TIP1 function and are effective cancer therapy alone or in combination with XRT in mouse models of human cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Glioblastoma , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Antibodies/pharmacology , Antibodies/therapeutic use , Paclitaxel , Disease Models, Animal
3.
Int J Mol Sci ; 24(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37240085

ABSTRACT

Molecules involved in drug resistance can be targeted for better therapeutic efficacies. Research on midkine (MDK) has escalated in the last few decades, which affirms a positive correlation between disease progression and MDK expression in most cancers and indicates its association with multi-drug resistance in cancer. MDK, a secretory cytokine found in blood, can be exploited as a potent biomarker for the non-invasive detection of drug resistance expressed in various cancers and, thereby, can be targeted. We summarize the current information on the involvement of MDK in drug resistance, and transcriptional regulators of its expression and highlight its potential as a cancer therapeutic target.


Subject(s)
Molecular Targeted Therapy , Neoplasms , Humans , Midkine , Cytokines/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Drug Resistance, Neoplasm/genetics
4.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328459

ABSTRACT

Therapeutic antibodies used to treat cancer are effective in patients with advanced-stage disease. For example, antibodies that activate T-lymphocytes improve survival in many cancer subtypes. In addition, antibody-drug conjugates effectively target cytotoxic agents that are specific to cancer. This review discusses radiation-inducible antigens, which are stress-regulated proteins that are over-expressed in cancer. These inducible cell surface proteins become accessible to antibody binding during the cellular response to genotoxic stress. The lead antigens are induced in all histologic subtypes and nearly all advanced-stage cancers, but show little to no expression in normal tissues. Inducible antigens are exploited by using therapeutic antibodies that bind specifically to these stress-regulated proteins. Antibodies that bind to the inducible antigens GRP78 and TIP1 enhance the efficacy of radiotherapy in preclinical cancer models. The conjugation of cytotoxic drugs to the antibodies further improves cancer response. This review focuses on the use of radiotherapy to control the cancer-specific binding of therapeutic antibodies and antibody-drug conjugates.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Antineoplastic Agents/pharmacology , Drug Delivery Systems , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/radiotherapy
5.
Clin Cancer Res ; 28(6): 1229-1239, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35031547

ABSTRACT

PURPOSE: Patients with glioblastoma (GBM) are treated with radiotherapy (RT) and temozolomide (TMZ). These treatments may cause prolonged systemic lymphopenia, which itself is associated with poor outcomes. NT-I7 is a long-acting IL7 that expands CD4 and CD8 T-cell numbers in humans and mice. We tested whether NT-I7 prevents systemic lymphopenia and improves survival in mouse models of GBM. EXPERIMENTAL DESIGN: C57BL/6 mice bearing intracranial tumors (GL261 or CT2A) were treated with RT (1.8 Gy/day × 5 days), TMZ (33 mg/kg/day × 5 days), and/or NT-I7 (10 mg/kg on the final day of RT). We followed the mice for survival while serially analyzing levels of circulating T lymphocytes. We assessed regulatory T cells (Treg) and cytotoxic T lymphocytes in the tumor microenvironment, cervical lymph nodes, spleen, and thymus, and hematopoietic stem and progenitor cells in the bone marrow. RESULTS: GBM tumor-bearing mice treated with RT+NT-I7 increased T lymphocytes in the lymph nodes, thymus, and spleen, enhanced IFNγ production, and decreased Tregs in the tumor which was associated with a significant increase in survival. NT-I7 also enhanced central memory and effector memory CD8 T cells in lymphoid organs and tumor. Depleting CD8 T cells abrogated the effects of NT-I7. Furthermore, NT-I7 treatment decreased progenitor cells in the bone marrow. CONCLUSIONS: In orthotopic glioma-bearing mice, NT-I7 mitigates RT-related lymphopenia, increases cytotoxic CD8 T lymphocytes systemically and in the tumor, and improves survival. A phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Lymphopenia , Animals , Brain Neoplasms/pathology , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Models, Animal , Glioma/pathology , Humans , Immunologic Factors/pharmacology , Interleukin-7 , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins , T-Lymphocytes, Cytotoxic/pathology , Temozolomide/pharmacology , Tumor Microenvironment
6.
Clin Cancer Res ; 27(11): 3224-3233, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34074654

ABSTRACT

PURPOSE: We recently discovered that anti-TIP1 antibody activates endocytosis in cancer cells, which facilitates retention of antibody and dissociation of a conjugated drug. To improve the pharmacokinetics and cancer specificity of radiosensitizing drugs, we utilized antibody-drug conjugates (ADCs) that bind specifically to radiation-inducible antigen, TIP1, on non-small cell lung cancer (NSCLC). This approach exploits the long circulation time of antibodies to deliver a radiosensitizing drug to cancer each day during radiotherapy. EXPERIMENTAL DESIGN: Antibodies to TIP1 were prioritized based on affinity, cancer-specific binding, and internalization. The lead antibody, 7H5, was conjugated with a cytotoxic drug MMAE because of its ability to radiosensitize cancer. Cytotoxicity, colony formation, and tumor growth studies were performed with 7H5-VcMMAE in combination with radiation. RESULTS: 7H5 showed a high affinity to recombinant TIP1 protein and radiation-inducible TIP1 on the cancer cell surface. 7H5 undergoes endocytosis in NSCLC cells in vitro. We obtained an average drug-to-antibody ratio (DAR) of 4.25 for 7H5-VcMMAE. A 70% reduction in viable cells was observed following 7H5-VcMMAE treatment compared with 7H5 alone in both A549 and H1299 cells. 7H5-VcMMAE sensitized NSCLC cells to radiation, thereby significantly decreasing the surviving fraction. The ADC combined with radiation showed a prolonged delay in tumor growth and improved survival in A549 and H1299 tumor models. CONCLUSIONS: Targeting radiation-inducible TIP1 with a radiosensitizing ADC is a promising strategy to enhance the therapeutic efficacy of NSCLC. This novel approach of targeting with ADCs to radiation-inducible antigens will lead to clinical trials in lung cancer patients treated with radiotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/radiotherapy , Immunoconjugates/therapeutic use , Lung Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/therapeutic use , A549 Cells , Antineoplastic Agents/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Combined Modality Therapy , Human Umbilical Vein Endothelial Cells , Humans , Immunoconjugates/pharmacokinetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology
7.
Nat Commun ; 11(1): 6037, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247158

ABSTRACT

Drug resistance and dose-limiting toxicities are significant barriers for treatment of multiple myeloma (MM). Bone marrow microenvironment (BMME) plays a major role in drug resistance in MM. Drug delivery with targeted nanoparticles have been shown to improve specificity and efficacy and reduce toxicity. We aim to improve treatments for MM by (1) using nanoparticle delivery to enhance efficacy and reduce toxicity; (2) targeting the tumor-associated endothelium for specific delivery of the cargo to the tumor area, and (3) synchronizing the delivery of chemotherapy (bortezomib; BTZ) and BMME-disrupting agents (ROCK inhibitor) to overcome BMME-induced drug resistance. We find that targeting the BMME with P-selectin glycoprotein ligand-1 (PSGL-1)-targeted BTZ and ROCK inhibitor-loaded liposomes is more effective than free drugs, non-targeted liposomes, and single-agent controls and reduces severe BTZ-associated side effects. These results support the use of PSGL-1-targeted multi-drug and even non-targeted liposomal BTZ formulations for the enhancement of patient outcome in MM.


Subject(s)
Bortezomib/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Nanoparticles/chemistry , Protein Kinase Inhibitors/therapeutic use , Tumor Microenvironment , rho-Associated Kinases/antagonists & inhibitors , Amides/pharmacology , Amides/therapeutic use , Animals , Apoptosis/drug effects , Bortezomib/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Progression , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Liposomes , Membrane Glycoproteins/metabolism , Mice , P-Selectin/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyridines/therapeutic use , Signal Transduction/drug effects , Tumor Burden , Tumor Microenvironment/drug effects , rho-Associated Kinases/metabolism , src-Family Kinases/metabolism
8.
Oncotarget ; 11(27): 2647-2659, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32676166

ABSTRACT

Resistance to radiation therapy is a significant problem in the treatment of non-small cell lung cancer (NSCLC). There is an unmet need to discover new molecular targets for drug development in combination with standard of care cancer therapy. We found that TAF15 was radiation-inducible using phage-displayed peptide libraries. In this study, we report that overexpression of TAF15 is correlated with worsened survival in NSCLC patients. Radiation treatment led to surface induction of TAF15 in vitro and in vivo. We genetically silenced TAF15 which led to a significant reduction in proliferation of NSCLC cells. Cells depleted of TAF15 exhibited cell cycle arrest and enhanced apoptosis through activation and accumulation of p53. In combination with radiation, TAF15 knockdown led to a significant reduction in the surviving fraction of NSCLC cell lines. To determine the importance of TAF15 surface expression, we targeted TAF15 with an antibody. In combination with radiation, the anti-TAF15 antibody led to a reduction in the surviving fraction of cancer cells. These studies show that TAF15 is a radiation-inducible molecular target that is accessible to anti-cancer antibodies and enhances cell viability in response to radiation.

9.
Oncotarget ; 11(19): 1681-1690, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32477458

ABSTRACT

The immune system plays a vital role in cancer therapy, especially with the advent of immunotherapy. Radiation therapy induces iatrogenic immunosuppression referred to as radiation-induced lymphopenia (RIL). RIL correlates with significant decreases in the overall survival of cancer patients. Although the etiology and severity of lymphopenia are known, the mechanism(s) of RIL are largely unknown. We found that irradiation not only had direct effects on circulating lymphocytes but also had indirect effects on the spleen, thymus, and bone marrow. We found that irradiated cells traffic to the bone marrow and bring about the reduction of hematopoietic stem cells (HSC) and progenitor cells. Using mass cytometry analysis (CyTOF) of the bone marrow, we found reduced expression of CD11a, which is required for T cell proliferation and maturation. RNA Sequencing and gene set enrichment analysis of the bone marrow cells following irradiation showed down-regulation of genes involved in hematopoiesis. Identification of CD11a and hematopoietic genes involved in iatrogenic immune suppression can help identify mechanisms of RIL.

10.
J Control Release ; 298: 194-201, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30763622

ABSTRACT

Targeted molecular imaging allows specific visualization and monitoring of tumors. Cancer-specific peptides have been developed for imaging and therapy. Peptides that specifically target cancer have several advantages including, ease of synthesis, low antigenicity, and enhanced diffusion into tissues. We developed the HVGGSSV peptide as a molecular targeting/imaging agent. HVGGSSV targets Tax interacting protein 1 (TIP1) which is a 14 kDa PDZ domain-containing protein that is overexpressed in cancer. We docked HVGGSSV in silico using the three-dimensional structure of TIP1 and found the binding energy was -6.0 kCal/mol. The binding affinity of HVGGSSV to TIP1 protein was found to have a KD of 3.3 × 10-6 M using surface plasmon resonance. We conjugated a 40 kDa PEG to HVGGSSV to enhance the circulation and evaluated the tumor binding in nude mice bearing heterotopic cervical (HT3), esophageal (OE33), pancreatic (BXPC3), lung (A549) and glioma (D54) tumors. NanoSPECT/CT imaging of the mice was performed 48 h and 72 h after injecting with 111Indium (111In) labeled PEG-HVGGSSV or PEG-control peptide. SPECT imaging revealed that 111In-PEG-HVGGSSV specifically bound to cervical, esophageal, pancreatic, lung and brain tumors. Post SPECT biodistribution data further validated tumor-specific binding. Overall, HVGGSSV peptide specifically binds to the major groove of the TIP1 protein surface. PEGylated-HVGGSSV could be used to target cancers that overexpress TIP1.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/metabolism , Peptides/administration & dosage , Polyethylene Glycols/chemistry , Animals , Cell Line, Tumor , Female , Humans , Indium Radioisotopes , Mice , Mice, Nude , Molecular Docking Simulation , Molecular Imaging , Neoplasms/pathology , Peptides/chemistry , Peptides/metabolism , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
11.
Gut ; 68(6): 1003-1013, 2019 06.
Article in English | MEDLINE | ID: mdl-29934438

ABSTRACT

OBJECTIVE: Lactobacillus rhamnosus GG (LGG), a probiotic, given by gavage is radioprotective of the mouse intestine. LGG-induced radioprotection is toll-like receptor 2 (TLR2) and cyclooxygenase-2 (COX-2)-dependent and is associated with the migration of COX-2+mesenchymal stem cells (MSCs) from the lamina propria of the villus to the lamina propria near the crypt epithelial stem cells. Our goals were to define the mechanism of LGG radioprotection including identification of the TLR2 agonist, and the mechanism of the MSC migration and to determine the safety and efficacy of this approach in models relevant to clinical radiation therapy. DESIGN: Intestinal radioprotection was modelled in vitro with cell lines and enteroids as well as in vivo by assaying clinical outcomes and crypt survival. Fractionated abdominal and single dose radiation were used along with syngeneic CT26 colon tumour grafts to assess tumour radioprotection. RESULTS: LGG with a mutation in the processing of lipoteichoic acid (LTA), a TLR2 agonist, was not radioprotective, while LTA agonist and native LGG were. An agonist of CXCR4 blocked LGG-induced MSC migration and LGG-induced radioprotection. LGG given by gavage induced expression of CXCL12, a CXCR4 agonist, in pericryptal macrophages and depletion of macrophages by clodronate liposomes blocked LGG-induced MSC migration and radioprotection. LTA effectively protected the normal intestinal crypt, but not tumours in fractionated radiation regimens. CONCLUSIONS: LGG acts as a 'time-release capsule' releasing radioprotective LTA. LTA then primes the epithelial stem cell niche to protect epithelial stem cells by triggering a multicellular, adaptive immune signalling cascade involving macrophages and PGE2 secreting MSCs. TRIAL REGISTRATION NUMBER: NCT01790035; Pre-results.


Subject(s)
Intestinal Mucosa/metabolism , Lacticaseibacillus rhamnosus , Lipopolysaccharides/metabolism , Probiotics/pharmacology , Radiation Injuries/prevention & control , Teichoic Acids/metabolism , Animals , Cell Movement/radiation effects , Cells, Cultured , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Intestinal Mucosa/drug effects , Intestinal Mucosa/radiation effects , Macrophage Activation/radiation effects , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Radiation-Protective Agents , Reference Values , Sensitivity and Specificity
12.
Mol Cancer Res ; 16(10): 1447-1453, 2018 10.
Article in English | MEDLINE | ID: mdl-29991528

ABSTRACT

The aggressive nature and inherent therapeutic resistance of glioblastoma multiforme (GBM) has rendered the median survival of afflicted patients to 14 months. Therefore, it is imperative to understand the molecular biology of GBM to provide new treatment options to overcome this disease. It has been demonstrated that the protein kinase R-like endoplasmic reticulum kinase (PERK) pathway is an important regulator of the endoplasmic reticulum (ER) stress response. PERK signaling has been observed in other model systems after radiation; however, less is known in the context of GBM, which is frequently treated with radiation-based therapies. To investigate the significance of PERK, we studied activation of the PERK-eIF2α-ATF4 pathway in GBM after ionizing radiation (IR). By inhibiting PERK, it was determined that ionizing radiation (IR)-induced PERK activity led to eIF2α phosphorylation. IR enhanced the prodeath component of PERK signaling in cells treated with Sal003, an inhibitor of phospho-eIF2α phosphatase. Mechanistically, ATF4 mediated the prosurvival activity during the radiation response. The data support the notion that induction of ER stress signaling by radiation contributes to adaptive survival mechanisms during radiotherapy. The data also support a potential role for the PERK/eIF2α/ATF4 axis in modulating cell viability in irradiated GBM.Implications: The dual function of PERK as a mediator of survival and death may be exploited to enhance the efficacy of radiation therapy.Visual Overview: http://mcr.aacrjournals.org/content/16/10/1447/F1.large.jpg Mol Cancer Res; 16(10); 1447-53. ©2018 AACR.


Subject(s)
Activating Transcription Factor 4/genetics , Eukaryotic Initiation Factor-2/genetics , Glioblastoma/radiotherapy , Radiation Tolerance/genetics , eIF-2 Kinase/genetics , Cell Line, Tumor , Cell Proliferation/radiation effects , Endoplasmic Reticulum/radiation effects , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/radiation effects , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Lentivirus/genetics , Phosphorylation/radiation effects , Radiation, Ionizing , Signal Transduction/radiation effects , Transfection
13.
J Pharm Sci ; 107(3): 922-933, 2018 03.
Article in English | MEDLINE | ID: mdl-29162424

ABSTRACT

Overall survival of patients with newly diagnosed glioblastoma (GBM) remains dismal at 16 months with state-of-the-art treatment that includes surgical resection, radiation, and chemotherapy. GBM tumors are highly heterogeneous, and mechanisms for overcoming tumor resistance have not yet fully been elucidated. An injectable chitosan hydrogel capable of releasing chemotherapy (temozolomide [TMZ]) while retaining radioactive isotopes agents (iodine, [131I]) was used as a vehicle for localized radiation and chemotherapy, within the surgical cavity. Release from hydrogels loaded with TMZ or 131I was characterized in vitro and in vivo and their efficacy on tumor progression and survival on GBM tumors was also measured. The in vitro release of 131I was negligible over 42 days, whereas the TMZ was completely released over the first 48 h. 131I was completely retained in the tumor bed with negligible distribution in other tissues and that when delivered locally, the chemotherapy accumulated in the tumor at 10-fold higher concentrations than when delivered systemically. We found that the tumors were significantly decreased, and survival was improved in both treatment groups compared to the control group. Novel injectable chemo-radio-hydrogel implants may potentially improve the local control and overall outcome of aggressive, poor prognosis brain tumors.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Hydrogels/administration & dosage , Animals , Cell Line, Tumor , Combined Modality Therapy/methods , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Disease Progression , Female , Humans , Injections/methods , Iodine Radioisotopes/administration & dosage , Male , Mice , Mice, Nude , Prognosis , Temozolomide
14.
Clin Cancer Res ; 23(10): 2556-2564, 2017 May 15.
Article in English | MEDLINE | ID: mdl-27815359

ABSTRACT

Purpose: Non-small cell lung cancer (NSCLC) and glioblastoma multiforme (GBM) have poor median survival. NSCLC and GBM overexpress glucose regulated protein 78 (GRP78), which has a role in radioresistance and recurrence. In this study, we determined the effect of anti-GRP78 antibody and the combined effect of the anti-GRP78 antibody with ionizing radiation (XRT) on NSCLC and GBM cell lines both in vitro and in vivoExperimental Design: NSCLC and GBM cancer cell lines were treated with anti-GRP78 antibodies and evaluated for proliferation, colony formation, cell death, and PI3K/Akt/mTOR signaling. The efficacy of anti-GRP78 antibodies on tumor growth in combination with XRT was determined in vivo in mouse xenograft models.Results: GBM and NSCLC cells treated with anti-GRP78 antibodies showed attenuated cell proliferation, colony formation, and enhanced apoptosis. GBM and NSCLC cells treated with anti-GRP78 antibodies also showed global suppression of PI3K/Akt/mTOR signaling. Combining antibody with XRT resulted in significant tumor growth delay in both NSCLC and GBM heterotopic tumor models.Conclusions: Antibodies targeting GRP78 exhibited antitumor activity and enhanced the efficacy of radiation in NSCLC and GBM both in vitro and in vivo GRP78 is a promising novel target, and anti-GRP78 antibodies could be used as an effective cancer therapy alone or in combination with XRT. Clin Cancer Res; 23(10); 2556-64. ©2016 AACR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Glioblastoma/drug therapy , Heat-Shock Proteins/antagonists & inhibitors , Neoplasm Recurrence, Local/drug therapy , Animals , Antibodies, Anti-Idiotypic/administration & dosage , Antibodies, Anti-Idiotypic/immunology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Endoplasmic Reticulum Chaperone BiP , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/pathology , Heat-Shock Proteins/immunology , Humans , Mice , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Xenograft Model Antitumor Assays
15.
J Nucl Med ; 57(12): 1991-1997, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27445290

ABSTRACT

Cancer-specific targeting sparing normal tissues would significantly enhance cancer therapy outcomes and reduce cancer-related mortality. One approach is to target receptors or molecules that are specifically expressed on cancer cells. Peptides as cancer-specific targeting agents offer advantages such as ease of synthesis, low antigenicity, and enhanced diffusion into tissues. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum stress chaperone that regulates the unfolded protein response and is overexpressed in various cancers. In this study, we evaluated GIRLRG peptide that specifically targets GRP78 for cancer-specific binding (in vitro) and noninvasive tumor imaging (in vivo). METHODS: GIRLRG peptide was modeled into the GRP78 ATPase domain using computational modeling. Surface plasmon resonance studies were performed to determine the affinity of GIRLRG peptide to GRP78 protein. GIRLRG was conjugated with PEG to prolong its circulation in mice. Tumor binding efficacy of PEG-GIRLRG peptide was evaluated in nude mice bearing heterotopic cervical (HT3), esophageal (OE33), pancreatic (BXPC3), lung (A549), and glioma (D54) tumors. Nano-SPECT/CT imaging of the mice was performed 48 and 72 h after injection with 111In-labeled PEG-GIRLRG or PEG-control peptide. Post-SPECT biodistribution studies were performed 96 h after injection of the radiolabeled peptides. RESULTS: Using molecular modeling and surface plasmon resonance, we identified that GIRLRG was binding with an affinity constant of 2.16 × 10-3 M in the ATPase domain of GRP78. GIRLRG peptide specifically bound to cervical, lung, esophageal, and glioma cells. SPECT imaging revealed that 111In-PEG-GIRLRG specifically bound to cervical, esophageal, pancreatic, lung, and brain tumors. Post-SPECT biodistribution data also validated the SPECT imaging results. CONCLUSION: GIRLRG peptide specifically binds to the ATPase domain of GRP78. Radiolabeled PEG-GIRLRG could be used to target various cancers. Further studies would be required to translate PEG-GIRLRG peptide into the clinic.


Subject(s)
Adenocarcinoma/metabolism , Oligopeptides/chemistry , Oligopeptides/metabolism , Polyethylene Glycols/chemistry , A549 Cells , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Animals , Endoplasmic Reticulum Chaperone BiP , Female , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Humans , Mice , Models, Molecular , Protein Binding , Protein Domains , Substrate Specificity
16.
Pharm Res ; 33(10): 2530-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27401411

ABSTRACT

PURPOSE: Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation has been limited by the poor tumor selectivity of agents. To address this unmet need, a boronated 2-nitroimidazole derivative (B-381) was synthesized and evaluated for its capability of targeting hypoxic glioma cells. METHODS: B-381 has been synthesized from a 1-step reaction. Using D54 and U87 glioma cell lines, the in vitro cytotoxicity and cellular accumulation of B-381 has been evaluated under normoxic and hypoxic conditions compared to L-boronophenylalanine (BPA). Furthermore, tumor retention of B-381 was evaluated in vivo. RESULTS: B-381 had low cytotoxicity in normal and cancer cells. Unlike BPA, B-381 illustrated preferential retention in hypoxic glioma cells compared to normoxic glioma cells and normal tissues in vitro. In vivo, B-381 illustrated significantly higher long-term tumor retention compared to BPA, with 9.5-fold and 6.5-fold higher boron levels at 24 and 48 h, respectively. CONCLUSIONS: B-381 represents a new class of BNCT agents in which their selectivity to tumors is based on hypoxic tumor metabolism. Further studies are warranted to evaluate B-381 and similar compounds as preclinical candidates for future BNCT clinical trials for the treatment of glioma.


Subject(s)
Boron Compounds/metabolism , Boron Neutron Capture Therapy/methods , Brain Neoplasms/metabolism , Glioma/metabolism , Nitroimidazoles/metabolism , Animals , Boron Compounds/administration & dosage , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Female , Glioma/drug therapy , Glioma/radiotherapy , Mice , Mice, Nude , Nitroimidazoles/administration & dosage , Treatment Outcome
17.
Oncotarget ; 7(28): 43352-43362, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27270318

ABSTRACT

Radiation-inducible neo-antigens are proteins expressed on cancer cell surface after exposure to ionizing radiation (IR). These neo-antigens provide opportunities to specifically target cancers while sparing normal tissues. Tax interacting protein-1 (TIP-1) is induced by irradiation and is translocated to the surface of cancer cells. We have developed a monoclonal antibody, 2C6F3, against TIP-1.Epitope mapping revealed that 2C6F3 binds to the QPVTAVVQRV epitope of the TIP-1 protein. 2C6F3 binds to the surface of lung cancer (A549, LLC) and glioma (D54, GL261) cell lines. 2C6F3 binds specifically to TIP-1 and ELISA analysis showed that unconjugated 2C6F3 efficiently blocked binding of radiolabeled 2C6F3 to purified TIP-1 protein. To study in vivo tumor binding, we injected near infrared (NIR) fluorochrome-conjugated 2C6F3 via tail vein in mice bearing subcutaneous LLC and GL261 heterotopic tumors. The NIR images indicated that 2C6F3 bound specifically to irradiated LLC and GL261 tumors, with little or no binding in un-irradiated tumors.We also determined the specificity of 2C6F3 to bind tumors in vivo using SPECT/CT imaging. 2C6F3 was conjugated with diethylene triamine penta acetic acid (DTPA) chelator and radiolabeled with 111Indium (111In). SPECT/CT imaging revealed that 111In-2C6F3 bound more to the irradiated LLC tumors compared to un-irradiated tumors. Furthermore, injection of DTPA-2C6F3 labeled with the therapeutic radioisotope, 90Y, (90Y-DTPA-2C6F3) significantly delayed LLC tumor growth. 2C6F3 mediated antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP) in vitro.In conclusion, the monoclonal antibody 2C6F3 binds specifically to TIP-1 on cancer and radio-immunoconjugated 2C6F3 improves tumor control.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Neoplasms/radiotherapy , Radioimmunotherapy/methods , Animals , Antibodies, Monoclonal/pharmacokinetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/radiation effects , Antineoplastic Agents, Immunological/pharmacokinetics , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Female , Humans , Indium Radioisotopes/pharmacokinetics , Indium Radioisotopes/therapeutic use , Intracellular Signaling Peptides and Proteins/radiation effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neoplasms/diagnostic imaging , Single Photon Emission Computed Tomography Computed Tomography , Xenograft Model Antitumor Assays
18.
Phytother Res ; 30(4): 588-95, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26749462

ABSTRACT

6-Gingerol, a potent nutraceutical, has been shown to have antitumor activity in different tumors, although its mechanism of action is not well understood. In this study, we evaluated antitumor activities of 6-gingerol on human oral (SCC4, KB) and cervical cancer (HeLa) cell lines with or without wortmannin, rapamycin, and cisplatin. Tumor cell proliferation was observed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium, inner salt assay, cell cycle analysis by propidium iodide labeling and flow cytometry, apoptosis by Annexin-V binding assay, and caspase activity by chemiluminescence assay. 6-Gingerol showed dose-dependent cytotoxicity in all three cell lines. Combinations of 6-gingerol with wortmannin and cisplatin showed additive effects, while with rapamycin, it showed 50% cytotoxicity that was equivalent to IC50 of 6-gingerol alone. Treatment with 6-gingerol resulted in G2-phase arrest in KB and HeLa cells and S-phase arrest in SCC4 cells. 6-Gingerol, wortmannin, and rapamycin treatment showed almost two-fold higher expression of caspase 3 in all cell lines. The results imply that 6-gingerol either alone or in combination with PI-3 K inhibitor and cisplatin may provide better therapeutic effects in oral and cervical carcinoma. Thus, 6-gingerol appears to be a safe and potent chemotherapeutic/chemopreventive compound acting through cell cycle arrest and induction of apoptosis in human oral and cervical tumor cells.


Subject(s)
Apoptosis/drug effects , Catechols/pharmacology , Cell Cycle Checkpoints/drug effects , Fatty Alcohols/pharmacology , Mouth Neoplasms/pathology , Uterine Cervical Neoplasms/pathology , Androstadienes/pharmacology , Caspase 3/metabolism , Cell Division/drug effects , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Cisplatin/pharmacology , Female , HeLa Cells/drug effects , Humans , Sirolimus/pharmacology , Uterine Cervical Neoplasms/drug therapy , Wortmannin
19.
Oncotarget ; 7(2): 2080-92, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26716508

ABSTRACT

Therapeutic resistance is a major barrier to improvement of outcomes for patients with glioblastoma. The endoplasmic reticulum stress response (ERSR) has been identified as a contributor to chemoresistance in glioblastoma; however the contributions of the ERSR to radioresistance have not been characterized. In this study we found that radiation can induce ER stress and downstream signaling associated with the ERSR. Induction of ER stress appears to be linked to changes in ROS balance secondary to irradiation. Furthermore, we observed global induction of genes downstream of the ERSR in irradiated glioblastoma. Knockdown of ATF6, a regulator of the ERSR, was sufficient to enhance radiation induced cell death. Also, we found that activation of ATF6 contributes to the radiation-induced upregulation of glucose regulated protein 78 (GRP78) and NOTCH1. Our results reveal ATF6 as a potential therapeutic target to enhance the efficacy of radiation therapy.


Subject(s)
Activating Transcription Factor 6/metabolism , Endoplasmic Reticulum Stress/radiation effects , Glioblastoma/pathology , Receptor, Notch1/metabolism , Activating Transcription Factor 6/genetics , Apoptosis/radiation effects , Blotting, Western , Cell Proliferation/radiation effects , Endoplasmic Reticulum Chaperone BiP , Flow Cytometry , Glioblastoma/radiotherapy , Humans , RNA, Messenger/genetics , Radiation, Ionizing , Real-Time Polymerase Chain Reaction , Receptor, Notch1/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
20.
Cancer Res ; 75(17): 3442-5, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26130648

ABSTRACT

Radiation-induced lymphopenia (RIL) is associated with treatment of different tumors (lung, colon, pancreas, breast, sarcomas, and glioblastoma). It is a significant clinical problem affecting the survival of cancer patients. The biologic mechanisms leading to RIL are not clearly understood. In this study, we established a mouse model of RIL representing therapeutic clinical regimen for lung cancer. Flow cytometry was used to analyze circulating levels of T and B cells and bone marrow (BM) stem cells. We found that fractionated radiation to the thorax significantly reduced circulating T and B cells as well as BM stem cells. Ex-vivo irradiation of blood and autologous reinjection to mice also significantly induced lymphopenia. Furthermore, we found that mobilization of stem cells from the BM and autologous stem cell transplant rescued RIL in mice. Overall, our results suggest that RIL has not only direct effect on circulating lymphocytes, but also has indirect effect on circulating lymphocytes as well as stem cells in the nonirradiated BM. These results open a new window for investigating the direct and indirect biologic mechanisms leading to RIL, and provide a preclinical basis to test the effect of stem cell transplantation for treatment of RIL in cancer patients.


Subject(s)
Bone Marrow Transplantation , Lung Neoplasms/radiotherapy , Lymphopenia/immunology , Radiotherapy/adverse effects , Animals , Bone Marrow Cells/radiation effects , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lymphopenia/etiology , Lymphopenia/therapy , Mice , Mice, Inbred C57BL , Stem Cells/pathology , Stem Cells/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL