Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Anesth Analg ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39270303

ABSTRACT

Staying updated on advancements in transfusion medicine is crucial, especially in critical care and perioperative setting, where timely and accurate transfusions can be lifesaving therapeutic interventions. This narrative review explores the landscape of transfusion-related adverse events, focusing on pulmonary transfusion reactions such as transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI). TACO and TRALI are the leading causes of transfusion-related morbidity and mortality; however, specific treatments are lacking. Understanding the current incidence, diagnostic criteria, pathogenesis, treatment, and prevention strategies can equip clinicians to help reduce the incidence of these life-threatening complications. The review discusses emerging pathogenic mechanisms, including the possible role of inflammation in TACO and the mechanisms of reverse TRALI and therapeutic targets for TACO and TRALI, emphasizing the need for further research to uncover preventive and treatment modalities. Despite advancements, significant gaps remain in our understanding of what occurs during transfusions, highlighting the necessity for improved monitoring methods. To address this, the review also presents novel blood cell labeling techniques in transfusion medicine used for improving monitoring, quality assessment, and as a consequence, potentially reducing transfusion-related complications. This article aims to provide an update for anesthesiologists, critical care specialists, and transfusion medicine professionals regarding recent advancements and developments in the field of transfusion medicine.

3.
Antibodies (Basel) ; 13(2)2024 May 01.
Article in English | MEDLINE | ID: mdl-38804303

ABSTRACT

Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare but severe complication following COVID-19 vaccination, marked by thrombocytopenia and thrombosis. Analogous to heparin-induced thrombocytopenia (HIT), VITT shares similarities in anti-platelet factor 4 (PF4) IgG-mediated platelet activation via the FcγRIIa. To investigate the involvement of platelet-antibodies in VITT, we analyzed the presence of platelet-antibodies directed against glycoproteins (GP)IIb/IIIa, GPV and GPIb/IX in the serum of 232 clinically suspected VITT patients determined based on (suspicion of) occurrence of thrombocytopenia and/or thrombosis in relation to COVID-19 vaccination. We found that 19% of clinically suspected VITT patients tested positive for anti-platelet GPs: 39%, 32% and 86% patients tested positive for GPIIb/IIIa, GPV and GPIb/IX, respectively. No HIT-like VITT patients (with thrombocytopenia and thrombosis) tested positive for platelet-antibodies. Therefore, it seems unlikely that platelet-antibodies play a role in HIT-like anti-PF4-mediated VITT. Platelet-antibodies were predominantly associated with the occurrence of thrombocytopenia. We found no association between the type of vaccination (adenoviral vector vaccine versus mRNA vaccine) or different vaccines (ChAdOx1 nCoV-19, Ad26.COV2.S, mRNA-1273, BTN162b2) and the development of platelet-antibodies. It is essential to conduct more research on the pathophysiology of VITT, to improve diagnostic approaches and identify preventive and therapeutic strategies.

4.
Br J Haematol ; 204(6): 2159-2161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719342

ABSTRACT

Immune thrombocytopenia (ITP) is a highly heterogeneous autoimmune bleeding disorder characterized by low platelet counts due to an immune-mediated platelet destruction and impaired platelet production. The pathophysiology is multifactorial and remains to be fully unravelled. Consequently, disease trajectories and responses to therapeutics, despite the availability of multiple agents, can be unpredictable and differing between patients. There is an urgent need for the identification of diagnostic and therapeutic biomarkers, but this has proven to be challenging to achieve. To shed light on this, two studies in this issue of the British Journal of Haematology have recognized the opportunity of using high-throughput Omics technologies in ITP. Sun et al. performed proteomics, and Li et al. metabolomics, on bone marrow biopsy samples of patients with ITP. This was conducted using mass spectrometry and, due to the generation of large datasets, in combination with machine learning. These studies set the stage for further investigations exploring the high potential of multi-omics technologies in order to shed light on the heterogeneity in ITP, accelerating the path towards a much needed personalized medicine approach. Commentary on: Li et al. Metabolomics profile and machine learning prediction of treatment responses in immune thrombocytopenia: A prospective cohort study. Br J Haematol 2024;204:2405-2417. Commentary on: Sun et al. Proteomics landscape and machine learning prediction of long-term response to splenectomy in primary immune thrombocytopenia. Br J Haematol 2024;204:2418-2428.


Subject(s)
Metabolomics , Proteomics , Purpura, Thrombocytopenic, Idiopathic , Humans , Purpura, Thrombocytopenic, Idiopathic/therapy , Purpura, Thrombocytopenic, Idiopathic/diagnosis , Purpura, Thrombocytopenic, Idiopathic/genetics , Purpura, Thrombocytopenic, Idiopathic/blood , Proteomics/methods , Metabolomics/methods , Biomarkers , Machine Learning
5.
Vox Sang ; 119(7): 728-736, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38597072

ABSTRACT

BACKGROUND AND OBJECTIVES: Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare adverse effect characterized by thrombocytopenia and thrombosis occurring after COVID-19 vaccination. VITT pathophysiology is not fully unravelled but shows similarities to heparin-induced thrombocytopenia (HIT). HIT is characterized by the presence of antibodies against platelet factor 4 (PF4)/heparin complex, which can activate platelets in an FcγRIIa-dependent manner, whereas IgG-antibodies directed against PF4 play an important role in VITT. MATERIALS AND METHODS: We characterized all clinically suspected VITT cases in the Netherlands from a diagnostic perspective and hypothesized that patients who developed both thrombocytopenia and thrombosis display underlying mechanisms similar to those in HIT. We conducted an anti-PF4 ELISA and a functional PF4-induced platelet activation assay (PIPAA) with and without blocking the platelet-FcγRIIa and found positivity in both tests, suggesting VITT with mechanisms similar to those in VITT. RESULTS: We identified 65 patients with both thrombocytopenia and thrombosis among 275 clinically suspected VITT cases. Of these 65 patients, 14 (22%) tested positive for anti-PF4 and PF4-dependent platelet activation. The essential role of platelet-FcγRIIa in VITT with mechanisms similar to those in HIT was evident, as platelet activation was inhibited by an FcγRIIa-blocking antibody in all 14 patients. CONCLUSION: Our study shows that only a small proportion of clinically suspected VITT patients with thrombocytopenia and thrombosis have anti-PF4-inducing, FcɣRIIa-dependent platelet activation, suggesting an HIT-like pathophysiology. This leaves the possibility for the presence of another type of pathophysiology ('non-HIT like') leading to VITT. More research on pathophysiology is warranted to improve the diagnostic algorithm and to identify novel therapeutic and preventive strategies.


Subject(s)
COVID-19 Vaccines , Platelet Activation , Platelet Factor 4 , Receptors, IgG , Thrombocytopenia , Thrombosis , Humans , Netherlands , Platelet Factor 4/immunology , Female , Male , Middle Aged , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis , Thrombocytopenia/blood , Thrombosis/blood , Thrombosis/immunology , Thrombosis/diagnosis , Thrombosis/etiology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Platelet Activation/immunology , Adult , Aged , COVID-19 , Heparin/adverse effects , Blood Platelets/immunology , Blood Platelets/metabolism , Immunoglobulin G/blood
6.
Pediatr Blood Cancer ; 71(4): e30835, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212881

ABSTRACT

BACKGROUND: Fetal and neonatal alloimmune thrombocytopenia (FNAIT) ensues from parental incompatibility for platelet alloantigens with maternal sensitization. HPA-1a/1b incompatibility is the most common cause of FNAIT in Caucasians. Placental villitis and lower birthweight in FNAIT suggest anti-HPA-1a may have effects beyond inducing thrombocytopenia. OBJECTIVES: Does FNAIT secondary to anti-HPA-1a result in smaller newborns and, the corollary, does antenatal management of FNAIT increase birthweight? STUDY DESIGN: Birthweights of 270 FNAIT-affected newborns from a randomized clinical trial and a NAITbabies.org survey (135 paired siblings) were compared with those of published controls and treated to untreated FNAIT-affected siblings. Birthweights were converted to percentiles to account for gestational age, sex, and role of birth order in birth weight. Body weights of FNAIT-affected and -unaffected pups in a mouse FNAIT model were analyzed. RESULTS: Untreated siblings in both the clinical trial and NAITbabies.org cohorts were not small, compared with normal controls. However, treated siblings in both cohorts had significantly higher birthweight percentiles compared with their previous untreated affected sibling. After accounting for gestational age, sex, and birth order, increased birthweight percentile in treated compared with the untreated siblings remained significant in both cohorts. FNAIT-affected neonatal mice had lower bodyweights than FNAIT-unaffected pups. CONCLUSIONS: Untreated FNAIT-affected newborns were not small; however, treatment of FNAIT-affected pregnancies increased newborn birthweights despite corrections to account for other factors that might have influenced the results. High dose IVIG is believed to "block" FcRn and lower maternal anti-HPA-1a levels, and thus increase birthweights by reducing levels of maternal anti-HPA-1a and reducing placental villitis.


Subject(s)
Antigens, Human Platelet , Thrombocytopenia, Neonatal Alloimmune , Animals , Female , Humans , Infant, Newborn , Mice , Pregnancy , Birth Weight , Fetus , Gestational Age , Placenta , Thrombocytopenia, Neonatal Alloimmune/therapy , Male , Randomized Controlled Trials as Topic
8.
Blood ; 143(1): 79-91, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37801721

ABSTRACT

ABSTRACT: Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion-related fatalities and, to date, is without available therapies. Here, we investigated the role of the complement system in TRALI. Murine anti-major histocompatibility complex class I antibodies were used in TRALI mouse models, in combination with analyses of plasma samples from patients with TRALI. We found that in vitro complement activation was related to in vivo antibody-mediated TRALI induction, which was correlated with increased macrophage trafficking from the lungs to the blood in a fragment crystallizable region (Fc)-dependent manner and that this was dependent on C5. Human immunoglobulin G 1 variants of the murine TRALI-inducing antibody 34-1-2S, either unable to activate complement and/or bind to Fcγ receptors (FcγRs), revealed an essential role for the complement system, but not for FcγRs, in the onset of 34-1-2S-mediated TRALI in mice. In addition, we found high levels of complement activation in the plasma of patients with TRALI (n = 53), which correlated with elevated neutrophil extracellular trap (NET) markers. In vitro we found that NETs could be formed in a murine, 2-hit model, mimicking TRALI with lipopolysaccharide and C5a stimulation. Collectively, this reveals a critical role of Fc-mediated complement activation in TRALI, with a direct relation to macrophage trafficking from the lungs to the blood and an association with NET formation, suggesting that targeting the complement system may be an attractive therapeutic approach for combating TRALI.


Subject(s)
Extracellular Traps , Transfusion-Related Acute Lung Injury , Humans , Mice , Animals , Lung , Antibodies , Macrophages , Complement Activation , Complement System Proteins
9.
Blood ; 142(12): 1034-1036, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37733381
SELECTION OF CITATIONS
SEARCH DETAIL