Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Am Heart Assoc ; 13(4): e032646, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38353216

ABSTRACT

BACKGROUND: The renal sympathetic nervous system modulates systemic blood pressure, cardiac performance, and renal function. Pathological increases in renal sympathetic nerve activity contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). We investigated the effects of renal sympathetic denervation performed at early or late stages of HFpEF progression. METHODS AND RESULTS: Male ZSF1 obese rats were subjected to radiofrequency renal denervation (RF-RDN) or sham procedure at either 8 weeks or 20 weeks of age and assessed for cardiovascular function, exercise capacity, and cardiorenal fibrosis. Renal norepinephrine and renal nerve tyrosine hydroxylase staining were performed to quantify denervation following RF-RDN. In addition, renal injury, oxidative stress, inflammation, and profibrotic biomarkers were evaluated to determine pathways associated with RDN. RF-RDN significantly reduced renal norepinephrine and tyrosine hydroxylase content in both study cohorts. RF-RDN therapy performed at 8 weeks of age attenuated cardiac dysfunction, reduced cardiorenal fibrosis, and improved endothelial-dependent vascular reactivity. These improvements were associated with reductions in renal injury markers, expression of renal NLR family pyrin domain containing 3/interleukin 1ß, and expression of profibrotic mediators. RF-RDN failed to exert beneficial effects when administered in the 20-week-old HFpEF cohort. CONCLUSIONS: Our data demonstrate that early RF-RDN therapy protects against HFpEF disease progression in part due to the attenuation of renal fibrosis and inflammation. In contrast, the renoprotective and left ventricular functional improvements were lost when RF-RDN was performed in later HFpEF progression. These results suggest that RDN may be a viable treatment option for HFpEF during the early stages of this systemic inflammatory disease.


Subject(s)
Heart Failure , Humans , Male , Rats , Animals , Heart Failure/metabolism , Stroke Volume , Tyrosine 3-Monooxygenase/metabolism , Kidney/metabolism , Sympathectomy/methods , Inflammation/metabolism , Norepinephrine , Fibrosis , Denervation
2.
Pharmacol Res ; 185: 106470, 2022 11.
Article in English | MEDLINE | ID: mdl-36202183

ABSTRACT

Difelikefalin is a peripherally restricted kappa opioid receptor (KOR) agonist that was recently approved by the FDA to treat pruritis in dialysis patients. Here, we investigated the cardiovascular and renal responses to difelikefalin, and using the KOR antagonist norbinaltorphimine (norBNI), examined whether any difelikefalin-induced changes in the renal excretion of water and/or electrolytes were mediated through a central or peripheral KOR pathway. The effects of norBNI pretreatment on nalfurafine, a KOR agonist that crosses the blood-brain barrier, were also examined. We hypothesized that difelikefalin would alter urine output differently than nalfurafine, given that KOR agonists produce diuresis via activating central KORs to inhibit vasopressin release. Following catheterization, conscious Sprague-Dawley rats were infused i.v. with isotonic saline and pretreated with norBNI centrally via an intracerebroventricular (ICV) cannula or peripherally via an intravenous catheter. After stabilization, difelikefalin or nalfurafine was administered i.v. and urine output, heart rate and mean arterial pressure (MAP) were recorded for 90 min. Difelikefalin produced a significant increase in urine output, and significant decrease in urinary sodium and potassium excretion, urine osmolality, and MAP. ICV norBNI pretreatment markedly attenuated the increase in urine output caused by difelikefalin and nalfurafine but did not inhibit the electrolyte effects. However, IV norBNI pretreatment prevented all responses to difelikefalin and nalfurafine. Together, these findings demonstrate that difelikefalin and nalfurafine utilize central KOR pathways to elicit diuresis and a decrease in MAP but enhance renal tubular electrolyte reabsorption through a peripheral KOR pathway, providing important insight into two clinically useful KOR agonists.


Subject(s)
Diuresis , Receptors, Opioid, kappa , Animals , Rats , Receptors, Opioid, kappa/metabolism , Rats, Sprague-Dawley , Analgesics, Opioid/pharmacology
3.
Br J Pharmacol ; 179(2): 287-300, 2022 01.
Article in English | MEDLINE | ID: mdl-34705263

ABSTRACT

BACKGROUND AND PURPOSE: Partial agonists of the nociceptin opioid peptide (NOP) receptor have potential therapeutic use as antihypertensive and water diuretics (aquaretics). To date, peptide NOP receptor ligands have failed to progress in clinical trials due to poor pharmacokinetics and adverse effects. Nonpeptide, small-molecule NOP receptor ligands may be more suitable as therapeutic agents. This study investigated the cardiovascular and renal responses produced by the novel nonpeptide NOP agonists AT-403, AT-090, AT-127, and AT-039. EXPERIMENTAL APPROACH: Changes in mean arterial pressure (MAP), heart rate (HR), renal excretory function and occurrence of sedation and hyperphagia were determined before and after i.v. bolus injection or infusion of the NOP agonists in conscious Sprague-Dawley rats. Additional studies involving (i) measurement of renal sympathetic nerve activity (RSNA) and (ii) renal denervation were conducted to investigate the role of the renal nerves in the cardiorenal responses to AT-039. KEY RESULTS: Bolus i.v. injection of AT-403, AT-090, AT-127 and AT-039 produced significant decreases in MAP and HR and a sodium-sparing diuresis. AT-403, AT-090, and AT-127, but not AT-039, induced sedation and hyperphagia at all doses tested. Infusion i.v. of AT-039 produced hypotension and aquaresis without adverse central nervous system effects or change in HR, responses that were also observed in renal denervated rats. CONCLUSIONS AND IMPLICATIONS: Nonpeptide NOP agonists decrease blood pressure and produce aquaresis in conscious rodents. Due to lack of sedation and hyperphagia, AT-039 represents a novel NOP agonist that may be useful for treatment of hypertension and/or volume overload/hyponatraemic states.


Subject(s)
Analgesics, Opioid , Receptors, Opioid , Analgesics, Opioid/pharmacology , Animals , Hyperphagia , Hypertension/drug therapy , Hypertension/metabolism , Ligands , Rats , Rats, Sprague-Dawley , Receptors, Opioid/agonists , Nociceptin Receptor
4.
Hypertension ; 79(2): 379-390, 2022 02.
Article in English | MEDLINE | ID: mdl-34852633

ABSTRACT

Nalfurafine is a G-protein-biased KOR (kappa opioid receptor) agonist that produces analgesia and lacks central nervous system adverse effects. Here, we examined the cardiovascular and renal responses to intravenous and oral nalfurafine alone and in combination with furosemide, hydrochlorothiazide, or amiloride. We hypothesized that nalfurafine, given its distinct mechanism of vasopressin inhibition, would increase urine output to these diuretics and limit electrolyte loss. Following catheterization, conscious Sprague-Dawley rats received an isotonic saline infusion and were then administered an intravenous bolus of nalfurafine, a diuretic, or a combination. Mean arterial pressure, heart rate, and urine output were recorded for 90 minutes. In another study, rats were placed in metabolic cages and administered drug in an oral volume load. Hourly urine samples were then collected for 5 hours. Intravenous and oral nalfurafine produced a marked diuresis, antinatriuresis, antikaliuresis, and a decrease in mean arterial pressure. Compared with diuretic treatment alone, intravenous coadministration with nalfurafine significantly increased urine output to furosemide and hydrochlorothiazide and decreased sodium and potassium excretion. Notably, mean arterial pressure was reduced with nalfurafine/diuretic combination therapy compared to diuretics alone. Similarly, oral coadministration of nalfurafine significantly increased urine output to hydrochlorothiazide and decreased sodium and potassium excretion, whereas combination with furosemide only limited the amount of sodium excreted. Further, both intravenous and oral coadministration of nalfurafine enhanced the diuresis to amiloride and decreased sodium excretion. Together, these findings demonstrate that nalfurafine enhances the diuresis to standard-of-care diuretics without causing an excessive loss of electrolytes, offering a new approach to treat several cardiovascular conditions.


Subject(s)
Analgesics, Opioid/pharmacology , Diuresis/drug effects , Diuretics/pharmacology , Morphinans/pharmacology , Receptors, Opioid, kappa/agonists , Spiro Compounds/pharmacology , Animals , Furosemide/pharmacology , Hydrochlorothiazide/pharmacology , Kidney/drug effects , Male , Rats , Rats, Sprague-Dawley
5.
Pharmacol Biochem Behav ; 207: 173218, 2021 08.
Article in English | MEDLINE | ID: mdl-34118232

ABSTRACT

The adverse effects of mu opioid agonists have spurred a renewed interest in using kappa opioid receptor (KOR) agonists as analgesics. KOR agonists also have potential for development as diuretics for the treatment of edema and hypertension. Here, we evaluated the discriminative stimulus, antinociceptive, and diuretic effects of the kappa agonist (±)-trans-U-50488 and its stereoisomers (-)-(1S,2S)-U-50488 or (+)-(1R,2R)-U-50488) alone and in combination with the cannabinoid agonist (-)-CP 55,940. To establish (±)-U-50488 as a discriminative stimulus, rats (n = 12) were trained to discriminate intraperitoneal (i.p.) administration of 5.6 mg/kg of (±)-trans-U-50488 from saline under a fixed-ratio 20 (FR-20) schedule of food reinforcement. Then, antinociception was assessed using two procedures: warm water tail withdrawal and von Frey paw withdrawal. Diuretic effects were assessed in separate rats (n = 6/group). Doses of (±)-U-50488 and (-)-U-50488 that served as discriminative stimuli produced significant increases in urine output, but at lower doses than those that produced antinociception. In contrast, (+)-U-50488 alone had no discriminative stimulus or diuretic effects at the doses tested, but did produce antinociception in the von Frey assay. When three cannabinoids and morphine were tested in the (±)-U-50488 discrimination procedure to determine the similarity of these drugs' discriminative stimulus effects to those for (±)-U-50488, the rank order similarity was (-)-CP 55,940 > (-)-trans-THC > (+)-WIN 55,212-2 ≥ morphine. (-)-CP 55,940 alone (0.056 mg/kg) partially substituted for the discriminative stimulus effects of (±)-U-50488 and produced significant diuretic and antinociceptive effects. (-)-CP 55,940 in combination with (±)-U-50488 also produced a two-fold leftward shift in the discriminative stimulus curve for (±)-U-50488, and near-additive antinociception with (±)-U-50488 and (+)-U-50488. Further, the diuretic effect of (-)-CP 55,940 was enhanced by a dose of (+)-U50488, which itself did not alter urine output. These data together indicate that a combination of cannabinoid and kappa opioid agonists can enhance diuresis, but may have limited potential for serving as opioid-sparing pharmacotherapeutics for treatment of pain.


Subject(s)
3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Analgesics/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/metabolism , Cyclohexanols/pharmacology , Receptors, Opioid, kappa/agonists , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/chemistry , Analgesics, Opioid/pharmacology , Animals , Behavior, Animal/drug effects , Benzoxazines/pharmacology , Diuretics/pharmacology , Dose-Response Relationship, Drug , Male , Morphine/pharmacology , Morpholines/pharmacology , Naphthalenes/pharmacology , Rats , Rats, Long-Evans , Reinforcement, Psychology , Stereoisomerism
6.
Hypertension ; 75(4): 1002-1011, 2020 04.
Article in English | MEDLINE | ID: mdl-32148128

ABSTRACT

We have previously reported that in salt-resistant rat phenotypes brain, Gαi2 (guanine nucleotide-binding protein alpha inhibiting activity polypeptide 2) proteins are required to maintain blood pressure and sodium balance. However, the impact of hypothalamic paraventricular nucleus (PVN) Gαi2 proteins on the salt sensitivity of blood pressure is unknown. Here, by the bilateral PVN administration of a targeted Gαi2 oligodeoxynucleotide, we show that PVN-specific Gαi2 proteins are required to facilitate the full natriuretic response to an acute volume expansion (peak natriuresis [µeq/min] scrambled (SCR) oligodeoxynucleotide 41±3 versus Gαi2 oligodeoxynucleotide 18±4; P<0.05) via a renal nerve-dependent mechanism. Furthermore, in response to chronically elevated dietary sodium intake, PVN-specific Gαi2 proteins are essential to counter renal nerve-dependent salt-sensitive hypertension (mean arterial pressure [mm Hg] 8% NaCl; SCR oligodeoxynucleotide 128±2 versus Gαi2 oligodeoxynucleotide 147±3; P<0.05). This protective pathway involves activation of PVN Gαi2 signaling pathways, which mediate sympathoinhibition to the blood vessels and kidneys (renal norepinephrine [pg/mg] 8% NaCl; SCR oligodeoxynucleotide 375±39 versus Gαi2 oligodeoxynucleotide 850±27; P<0.05) and suppression of the activity of the sodium chloride cotransporter assessed as peak natriuresis to hydrochlorothiazide. Additionally, central oligodeoxynucleotide-mediated Gαi2 protein downregulation prevented PVN parvocellular neuron activation, assessed by FosB immunohistochemistry, in response to increased dietary salt intake. In our analysis of the UK BioBank data set, it was observed that 2 GNAI2 single nucleotide polymorphism (SNP) (rs2298952, P=0.041; rs4547694, P=0.017) significantly correlate with essential hypertension. Collectively, our data suggest that selective targeting and activation of PVN Gαi2 proteins is a novel therapeutic approach for the treatment of salt-sensitive hypertension.


Subject(s)
Blood Pressure/physiology , GTP-Binding Protein alpha Subunit, Gi2/metabolism , Hypertension/metabolism , Kidney/metabolism , Natriuresis/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Sodium Chloride, Dietary , Animals , Male , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
7.
Am J Hypertens ; 33(2): 198-204, 2020 02 22.
Article in English | MEDLINE | ID: mdl-31677381

ABSTRACT

BACKGROUND: Angiotensin II (Ang II) activates central Angiotensin II type 1 receptors to increase blood pressure via multiple pathways. However, whether central Gα proteins contribute to Ang II-induced hypertension remains unknown. We hypothesized that Angiotensin II type 1 receptors couple with Gα12 and/or Gαq to produce sympatho-excitation and increase blood pressure and downregulation of these Gα-subunit proteins will attenuate Ang II-dependent hypertension. METHODS AND RESULTS: After chronic infusion of Ang II (s.c. 350 ng/kg/min) or vehicle for 2 weeks, Ang II evoked an increase in Gα12 expression, but not Gαq in the rostral ventrolateral medulla of Sprague-Dawley rats. In other studies, rats that received Ang II or vehicle infusion s.c. were simultaneously infused i.c.v. with a scrambled (SCR) or Gα12 oligodeoxynucleotide (ODN; 50 µg/day). Central Gα12 ODN infusion lowered mean blood pressure in Ang II infused rats compared with SCR ODN infusion (14-day peak; 133 ± 12 vs. 176 ± 11 mm Hg). Compared to the SCR ODN group, Ang II infused rats that received i.c.v. Gα12 ODN showed a greater increase in heart rate to atropine, an attenuated reduction in blood pressure to chlorisondamine, and an improved baroreflex sensitivity. In addition, central Gα12 and Gαq ODN pretreatment blunted the pressor response to an acute i.c.v. injection of Ang II (i.c.v., 200 ng). CONCLUSIONS: These findings suggest that central Gα12 protein signaling pathways play an important role in the development of chronic Ang II-dependent hypertension in rats.


Subject(s)
Angiotensin II , Blood Pressure , Brain/enzymology , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Hypertension/prevention & control , Animals , Disease Models, Animal , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Hypertension/chemically induced , Hypertension/enzymology , Hypertension/physiopathology , Male , Oligodeoxyribonucleotides/administration & dosage , Rats, Sprague-Dawley , Signal Transduction
8.
BMC Pharmacol Toxicol ; 20(1): 73, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31791399

ABSTRACT

BACKGROUND: Timolol Maleate is a non-selective beta-adrenergic blocker that is commonly used to treat open-angle glaucoma. Despite its topical administration, ophthalmic timolol enters systemic circulation and produces a systemic beta-adrenergic blockade. We report a case of long-term timolol use that uncovered and worsened an underlying cardiac conduction defect demonstrated as a third degree atrioventricular (AV) block. CASE PRESENTATION: A 62-year old male with a 13-year history of glaucoma was hospitalized due to shortness of breath, dizziness, and amaurosis. Electrocardiography indicated a heart rate (HR) of 29 bpm with complete atrioventricular (AV) block, and the HR was significantly increased with the treatment of isoprenaline. However, the patient experienced bradycardic episodes (- 20 Δbpm) immediately after self-administration of timolol eye drops. The AV block and bradycardia resolved 48-h after timolol cessation. The man was discharged 1 week later with an asymptomatic first-degree A-V block. However, he presented with a worsened A-V block at his one-year checkup. CONCLUSION: We conclude that chronic topical timolol administration may aggravate a cardiac conduction defect leading to an AV block that is only temporarily resolved by timolol cessation. Patients taking timolol should be routinely monitored for cardiovascular aberrations and if any detected, immediately discontinue timolol therapy. Individuals experiencing timolol induced cardiovascular side effects should receive long term follow-up even if symptoms resolve, as they may be indicative of an underlying conduction defect.


Subject(s)
Atrioventricular Block/chemically induced , Glaucoma/drug therapy , Timolol/adverse effects , Atrioventricular Block/diagnosis , Atrioventricular Block/drug therapy , Electrocardiography , Heart Rate/drug effects , Humans , Male , Middle Aged , Ophthalmic Solutions , Timolol/administration & dosage , Timolol/therapeutic use , Treatment Outcome
9.
J Am Coll Cardiol ; 72(21): 2609-2621, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30466519

ABSTRACT

BACKGROUND: Previously, we have shown that radiofrequency (RF) renal denervation (RDN) reduces myocardial infarct size in a rat model of acute myocardial infarction (MI) and improves left ventricular (LV) function and vascular reactivity in the setting of heart failure following MI. OBJECTIVES: The authors investigated the therapeutic efficacy of RF-RDN in a clinically relevant normotensive swine model of heart failure with reduced ejection fraction (HFrEF). METHODS: Yucatan miniswine underwent 75 min of left anterior descending coronary artery balloon occlusion to induce MI followed by reperfusion (R) for 18 weeks. Cardiac function was assessed pre- and post-MI/R by transthoracic echocardiography and every 3 weeks for 18 weeks. HFrEF was classified by an LV ejection fraction <40%. Animals who met inclusion criteria were randomized to receive bilateral RF-RDN (n = 10) treatment or sham-RDN (n = 11) at 6 weeks post-MI/R using an RF-RDN catheter. RESULTS: RF-RDN therapy resulted in significant reductions in renal norepinephrine content and circulating angiotensin I and II. RF-RDN significantly increased circulating B-type natriuretic peptide levels. Following RF-RDN, LV end-systolic volume was significantly reduced when compared with sham-treated animals, leading to a marked and sustained improvement in LV ejection fraction. Furthermore, RF-RDN improved LV longitudinal strain. Simultaneously, RF-RDN reduced LV fibrosis and improved coronary artery responses to vasodilators. CONCLUSIONS: RF-RDN provides a novel therapeutic strategy to reduce renal sympathetic activity, inhibit the renin-angiotensin system, increase circulating B-type natriuretic peptide levels, attenuate LV fibrosis, and improve left ventricular performance and coronary vascular function. These cardioprotective mechanisms synergize to halt the progression of HFrEF following MI/R in a clinically relevant model system.


Subject(s)
Autonomic Denervation/methods , Disease Progression , Heart Failure/diagnostic imaging , Heart Failure/prevention & control , Kidney/innervation , Renin-Angiotensin System/physiology , Animals , Dose-Response Relationship, Drug , Echocardiography/methods , Female , Heart Failure/metabolism , Kidney/diagnostic imaging , Kidney/metabolism , Kidney/surgery , Renal Artery/diagnostic imaging , Renal Artery/innervation , Renal Artery/metabolism , Renal Artery/surgery , Renin-Angiotensin System/drug effects , Swine , Swine, Miniature , Vasodilator Agents/pharmacology , Ventricular Remodeling/drug effects , Ventricular Remodeling/physiology
10.
J Am Coll Cardiol ; 70(17): 2139-2153, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29050562

ABSTRACT

BACKGROUND: Sustained sympathetic activation contributes to the progression of myocardial cell injury, cardiac fibrosis, and left ventricular (LV) dysfunction in heart failure (HF). OBJECTIVES: This study investigated the effects of radiofrequency renal nerve denervation (RF-RDN) on the pathobiology of HF and the interaction between the renal sympathetic nerves and natriuretic peptide (NP) metabolism. METHODS: Spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) were subjected to 45 min of coronary artery ligation and reperfusion for 12 weeks. At 4 weeks post-reperfusion, SHR and WKY underwent either bilateral RF-RDN or sham-RDN. RESULTS: Following RF-RDN in both strains, LV ejection fraction remained significantly above those levels in respective sham-RDN rats, and at the end of the 12-week study, rats in both strains had significantly reduced LV fibrosis and improved vascular function. RF-RDN therapy significantly improved vascular reactivity to endothelium-dependent and -independent vasodilators as well as vascular compliance in the setting of severe HF. Improvements in LV function were accompanied by significant elevations in circulating NP as compared to those associated with sham-RDN. Further investigation into the cause of increased circulating NP levels demonstrated that RF-RDN significantly inhibited renal neprilysin activity in SHR and WKY with HF. Likewise, chronic treatment with the beta1 antagonist bisoprolol inhibited renal neprilysin activity and increased circulation NP levels in WKY with HF. CONCLUSIONS: This study identifies a novel endogenous pathway by which the renal nerves participate in the degradation of cardioprotective NP. Furthermore, removal of the influence of the renal nerves on kidney function attenuates renal neprilysin activity, augments circulating NP levels, reduces myocardial fibrosis, and improves LV function in the setting of HF.


Subject(s)
Heart Failure/therapy , Kidney/innervation , Neprilysin/antagonists & inhibitors , Sympathectomy , Aminobutyrates/pharmacology , Angiotensin II/blood , Animals , Biphenyl Compounds , Bisoprolol/pharmacology , Blood Pressure , Drug Combinations , Echocardiography , Myocardium/chemistry , Myocardium/pathology , Neprilysin/physiology , Nitrites/analysis , Norepinephrine/blood , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Renal Artery/innervation , Renin/blood , Reperfusion Injury/physiopathology , Tetrazoles/pharmacology , Valsartan , Ventricular Function, Left/physiology
11.
Am J Hypertens ; 29(12): 1394-1401, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27538721

ABSTRACT

BACKGROUND: Radiofrequency ablation of the renal arteries (RF-ABL) has been shown to decrease blood pressure (BP) in drug-resistant hypertensive patients who receive antihypertensive drug therapy. However, there remain questions regarding how RF-ABL influences BP independent of drug therapy and whether complete renal denervation is necessary to maximally lower BP. To study these questions, we examined the cardiovascular, sympathetic, and renal effects produced by RF-ABL of the proximal renal arteries in spontaneously hypertensive rats (SHR) with established hypertension. METHODS: SHR were instrumented (telemetry) for measurement of systolic/diastolic BP (SBP/DBP). Rats then underwent Sham-ABL or RF-ABL adjacent to the renal ostium and BP was recorded for 8 weeks. Changes in sympathetic activity, 24-hour water/sodium excretion, and levels of urinary angiotensinogen (AGT), plasma renin activity, and kidney renin content (KRC) were measured in SHR. RESULTS: Compared with Sham-ABL, RF-ABL produced a sustained decrease in BP. At 8 weeks, SBP/DBP was 171±6/115±3 and 183±4/129±3mm Hg for RF-ABL and Sham-ABL SHR, respectively. Correlating with the reduction in BP, RF-ABL significantly decreased the low frequency/total and low frequency/high frequency of BP variability and attenuated the hypotensive response to chlorisondamine. Kidney norepinephrine levels were markedly decreased at 8 weeks in RF-ABL vs. Sham-ABL SHR. There were no group differences in 24-hour sodium/water excretion or urinary AGT excretion rate (6 weeks) or plasma renin activity or KRC (8 weeks). In other studies, concurrent RF-ABL plus surgical denervation initially decreased BP to a greater level than RF-ABL alone, but thereafter the reduction in BP between groups was not different. CONCLUSIONS: In hypertensive SHR, bilateral RF-ABL of the proximal renal arteries produced a sustained decease in sympathetic activity and BP without changes in sodium/water excretion or activity of the systemic/renal renin-angiotensin system.


Subject(s)
Catheter Ablation , Hypertension/surgery , Kidney/blood supply , Neural Inhibition , Renal Artery/innervation , Sympathectomy/methods , Sympathetic Nervous System/surgery , Angiotensinogen/urine , Animals , Blood Pressure , Disease Models, Animal , Hypertension/physiopathology , Male , Natriuresis , Norepinephrine/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Renin/blood , Renin-Angiotensin System , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology , Time Factors , Urination
12.
Circ Res ; 119(3): 470-80, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27296507

ABSTRACT

RATIONALE: Catheter-based renal denervation (RDN) is currently under development for the treatment of resistant hypertension and is thought to reduce blood pressure via interruption of sympathetic pathways that modulate cardiovascular function. The sympathetic nervous system also plays a critical role in the pathogenesis of acute myocardial infarction and heart failure. OBJECTIVE: We examined whether treatment with radiofrequency (RF)-RDN would protect the heart against subsequent myocardial ischemia/reperfusion injury via direct effects on the myocardium. METHODS AND RESULTS: Spontaneously hypertensive rats received either bilateral RF-RDN or sham-RDN. At 4 weeks after RF-RDN (n=14) or sham-RDN (n=14) treatment, spontaneously hypertensive rats were subjected to 30 minutes of transient coronary artery occlusion and 24 hours -7 days reperfusion. Four weeks after RF-RDN, myocardial oxidative stress was markedly attenuated, and transcription and translation of antioxidants, superoxide dismutase 1 and glutathione peroxidase-1, were significantly upregulated compared with sham-RDN spontaneously hypertensive rats. RF-RDN also inhibited myocardial G protein-coupled receptor kinase 2 pathological signaling and enhanced myocardial endothelial nitric oxide synthase function and nitric oxide signaling. RF-RDN therapy resulted in a significant reduction in myocardial infarct size per area at risk compared with sham-RDN (26.8 versus 43.9%; P<0.01) at 24 hours postreperfusion and significantly improved left ventricular function at 7 days after myocardial ischemia/reperfusion. CONCLUSIONS: RF-RDN reduced oxidative stress, inhibited G protein-coupled receptor kinase 2 signaling, increased nitric oxide bioavailability, and ameliorated myocardial reperfusion injury in the setting of severe hypertension. These findings provide new insights into the remote cardioprotective effects of RF-RDN acting directly on cardiac myocytes to attenuate cell death and protect against ischemic injury.


Subject(s)
Catheter Ablation/methods , G-Protein-Coupled Receptor Kinase 2/metabolism , Kidney/metabolism , Myocardial Ischemia/metabolism , Myocardial Ischemia/prevention & control , Nitric Oxide/biosynthesis , Animals , Denervation/methods , G-Protein-Coupled Receptor Kinase 2/antagonists & inhibitors , Kidney/innervation , Kidney/surgery , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Oxidative Stress/physiology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction/physiology
13.
Curr Hypertens Rep ; 15(3): 175-81, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23588856

ABSTRACT

Elevated serum uric acid concentration is a common laboratory finding in subjects with metabolic syndrome/obesity, hypertension, kidney disease and cardiovascular events. Hyperuricemia has been attributed to hyperinsulinemia in metabolic syndrome and to decreased uric acid excretion in kidney dysfunction, and is not acknowledged as a main mediator of metabolic syndrome, renal disease, and cardiovascular disorder development. However, more recent investigations have altered this traditional view and shown, by providing compelling evidence, to support an independent link between hyperuricemia and increased risk of metabolic syndrome, diabetes, hypertension, kidney disease and cardiovascular disorders. However, despite these new findings, controversy regarding the exact role of uric acid in inducing these diseases remains to be unfolded. Furthermore, recent data suggest that the high-fructose diet in the United State, as a major cause of hyperuricemia, may be contributing to the metabolic syndrome/obesity epidemic, diabetes, hypertension, kidney disease and cardiovascular disorder. Our focus in this review is to discuss the available evidence supporting a role for uric acid in the development of metabolic syndrome, hypertension, renal disease, and cardiovascular disorder; and the potential pathophysiology mechanisms involved.


Subject(s)
Cardiovascular Diseases/blood , Hypertension/blood , Kidney Diseases/blood , Kidney/injuries , Metabolic Syndrome/blood , Uric Acid/blood , Animals , Cardiovascular Diseases/diagnosis , Humans , Metabolic Syndrome/diagnosis
14.
Hypertension ; 61(2): 368-75, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23213191

ABSTRACT

In salt-resistant phenotypes, chronic elevated dietary sodium intake evokes suppression of renal sodium-retaining mechanisms to maintain sodium homeostasis and normotension. We have recently shown that brain Gαi(2) protein pathways are required to suppress renal sympathetic nerve activity and facilitate maximal sodium excretion during acute intravenous volume expansion in Sprague-Dawley rats. Here, we studied the role of brain Gαi(2) proteins in the endogenous central neural mechanisms acting to maintain fluid and electrolyte homeostasis and normotension during a chronic elevation in dietary salt intake. Naive or bilaterally renal denervated adult male Sprague-Dawley rats were randomly assigned to receive an intracerebroventricular scrambled or Gαi(2) oligodeoxynucleotide infusion and then subjected to either a normal salt (0.4%) or high-salt (8.0%) diet for 21 days. In scrambled oligodeoxynucleotide-infused rats, salt loading, which did not alter blood pressure, evoked a site-specific increase in hypothalamic paraventricular nucleus Gαi(2) protein levels and suppression of circulating norepinephrine content and plasma renin activity. In salt-loaded rats continuously infused intracerebroventricularly with a Gαi(2) oligodeoxynucleotide, animals exhibited sodium and water retention, elevated plasma norepinephrine levels, and hypertension, despite suppression of plasma renin activity. Furthermore, in salt-loaded bilaterally renal denervated rats, Gαi(2) oligodeoxynucleotide infusion failed to evoke salt-sensitive hypertension. Therefore, in salt-resistant rats subjected to a chronic high-salt diet, brain Gαi(2) proteins are required to inhibit central sympathetic outflow to the kidneys and maintain sodium balance and normotension. In conclusion, these data demonstrate a central role of endogenous brain, likely paraventricular nucleus-specific, Gαi(2)-subunit protein-gated signal transduction pathways in maintaining a salt-resistant phenotype.


Subject(s)
Blood Pressure/physiology , Brain/metabolism , GTP-Binding Protein alpha Subunit, Gi2/metabolism , Kidney/innervation , Sodium Chloride, Dietary/metabolism , Animals , Blood Pressure/drug effects , GTP-Binding Protein alpha Subunit, Gi2/genetics , Homeostasis/drug effects , Hypertension/chemically induced , Hypertension/metabolism , Kidney/metabolism , Male , Neural Pathways/drug effects , Neural Pathways/metabolism , Rats , Rats, Sprague-Dawley , Renin/blood , Sodium Chloride, Dietary/pharmacology , Sympathectomy , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism
15.
FASEB J ; 26(7): 2776-87, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22459149

ABSTRACT

Fluid and electrolyte homeostasis is integral to blood pressure regulation. However, the central molecular mechanisms regulating the neural control of sodium excretion remain unclear. We have demonstrated that brain Gαi(2)-subunit protein pathways mediate the natriuretic response to α(2)-adrenoreceptor activation in vivo. Consequently, we examined the role of brain Gαi(2) proteins in the neural mechanisms facilitating fluid and electrolyte homeostasis in response to acute [i.v. volume expansion (VE)] or chronic stressful stimuli (dietary sodium restriction vs. supplementation) in conscious Sprague-Dawley rats. Selective oligodeoxynucleotide (ODN)-mediated down-regulation of brain Gαi(2) proteins, but not a scrambled ODN, abolished the renal sympathoinhibitory response and attenuated the natriuresis to VE. In scrambled ODN-treated rats, chronic changes in dietary sodium intake evoked an endogenous, hypothalamic paraventricular nucleus (PVN)-specific, decrease (sodium deficiency) or increase (sodium excess) in PVN Gαi(2) proteins; plasma norepinephrine levels were inversely related to dietary sodium content. Finally, in rats treated with an ODN to prevent high salt-induced up-regulation of brain Gαi(2) proteins, animals exhibited sodium retention, global sympathoexcitation, and elevated blood pressure. Collectively, these data demonstrate that PVN Gαi(2) protein pathways play an endogenous role in maintaining fluid and electrolyte balance by controlling the influence the sympathetic nervous system has on the renal handling of sodium.


Subject(s)
Brain/physiology , GTP-Binding Protein alpha Subunit, Gi2/metabolism , Water-Electrolyte Balance/physiology , Animals , Base Sequence , Diuresis , Down-Regulation , GTP-Binding Protein alpha Subunit, Gi2/antagonists & inhibitors , GTP-Binding Protein alpha Subunit, Gi2/genetics , Homeostasis , Kidney/physiology , Male , Natriuresis , Oligonucleotide Probes/genetics , Rats , Rats, Sprague-Dawley , Signal Transduction , Sodium, Dietary/administration & dosage , Stress, Physiological , Sympathetic Nervous System/physiology
16.
Endocrinology ; 153(3): 1411-20, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22234465

ABSTRACT

Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 µg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated.


Subject(s)
Angiotensin II/metabolism , Feeding Behavior , Gene Expression Regulation , Hypothalamus/metabolism , Neuropeptides/biosynthesis , Animals , Cachexia/metabolism , Cholecystokinin/metabolism , Eating/drug effects , Infusions, Intraventricular , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuropeptide Y/metabolism , Neuropeptides/chemistry , Neuropeptides/metabolism , Orexins , Phosphorylation , Time Factors
17.
FASEB J ; 26(2): 947-54, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22038051

ABSTRACT

Computational methods have led two groups to predict the endogenous presence of a highly conserved, amidated, 14-aa neuropeptide called either spexin or NPQ. NPQ/spexin is part of a larger prohormone that contains 3 sets of RR residues, suggesting that it could yield more than one bioactive peptide; however, no in vivo activity has been demonstrated for any peptide processed from this precursor. Here we demonstrate biological activity for two peptides present within proNPQ/spexin. NPQ/spexin (NWTPQAMLYLKGAQ-NH(2)) and NPQ 53-70 (FISDQSRRKDLSDRPLPE) have differing renal and cardiovascular effects when administered intracerebroventricularly or intravenously into rats. Intracerebroventricular injection of NPQ/spexin produced a 13 ± 2 mmHg increase in mean arterial pressure, a 38 ± 8 bpm decrease in heart rate, and a profound decrease in urine flow rate. Intracerebroventricular administration of NPQ 53-70 produced a 26 ± 9 bpm decrease in heart rate with no change in mean arterial pressure, and a marked increase in urine flow rate. Intraventricular NPQ/spexin and NPQ 53-70 also produced antinociceptive activity in the warm water tail withdrawal assay in mice (ED(50)<30 and 10 nmol for NPQ/spexin and NPQ 53-70, respectively). We conclude that newly identified peptides derived from the NPQ/spexin precursor contribute to CNS-mediated control of arterial blood pressure and salt and water balance and modulate nociceptive responses.


Subject(s)
Cardiovascular Physiological Phenomena , Kidney/physiology , Neuropeptides/physiology , Nociception/physiology , Peptide Hormones/physiology , Amino Acid Sequence , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cardiovascular Physiological Phenomena/drug effects , Humans , Injections, Intraventricular , Kidney/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Molecular Sequence Data , Neuropeptides/administration & dosage , Neuropeptides/genetics , Nociception/drug effects , Peptide Fragments/administration & dosage , Peptide Fragments/genetics , Peptide Fragments/physiology , Peptide Hormones/administration & dosage , Peptide Hormones/genetics , Protein Processing, Post-Translational , Rats , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
18.
J Pharmacol Exp Ther ; 337(1): 247-55, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21233196

ABSTRACT

Strychnine-sensitive glycine receptors and glycine-immunoreactive fibers are expressed in the hypothalamic paraventricular nucleus (PVN), yet the functional significance of this innervation is unclear. Therefore, these studies examined the changes in cardiovascular and renal function and renal sympathetic nerve activity (RSNA) produced by the microinjection of glycine (5 and 50 nmol) into the PVN of conscious Sprague-Dawley rats. Microinjection of glycine into, but not outside of, the PVN dose-dependently increased urine flow rate and urinary sodium excretion and decreased RSNA. At the higher dose, PVN glycine also decreased heart rate; neither 5 nor 50 nmol PVN glycine altered mean arterial pressure. The glycine (50 nmol)-evoked diuresis and natriuresis were abolished in rats continuously infused intravenously with [Arg(8)]-vasopressin. Furthermore, chronic bilateral renal denervation prevented the bradycardia and diuresis to PVN glycine and blunted the natriuresis. In other studies, unilateral PVN pretreatment with the glycine receptor antagonist strychnine (1.6 nmol) prevented the effects of PVN glycine (50 nmol) on heart rate, RSNA, and renal excretory function. When microinjected bilaterally, PVN strychnine (1.6 nmol per site) evoked a significant increase in heart rate and RSNA without altering renal excretory function. These findings demonstrate that in conscious rats glycine acts in the PVN to enhance the renal excretion of water and sodium and decrease central sympathetic outflow to the heart and kidneys. Although endogenous PVN glycine inputs elicit a tonic control of heart rate and RSNA, the renal excretory responses to PVN glycine seem to be caused primarily by the inhibition of arginine vasopressin secretion.


Subject(s)
Diuresis/physiology , Glycine/administration & dosage , Heart Rate/physiology , Natriuresis/physiology , Paraventricular Hypothalamic Nucleus/physiology , Sympathetic Fibers, Postganglionic/physiology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Diuresis/drug effects , Heart Rate/drug effects , Infusions, Intraventricular , Kidney/drug effects , Kidney/physiology , Male , Microinjections/methods , Natriuresis/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Rats , Rats, Sprague-Dawley , Sympathetic Fibers, Postganglionic/drug effects
19.
Biochim Biophys Acta ; 1813(2): 346-57, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21145921

ABSTRACT

Decreasing the temperature to 30°C is accompanied by significant enhancement of α(2C)-AR plasma membrane levels in several cell lines with fibroblast phenotype, as demonstrated by radioligand binding in intact cells. No changes were observed on the effects of low-temperature after blocking receptor internalization in α(2C)-AR transfected HEK293T cells. In contrast, two pharmacological chaperones, dimethyl sulfoxide and glycerol, increased the cell surface receptor levels at 37°C, but not at 30°C. Further, at 37°C α(2C)-AR is co-localized with endoplasmic reticulum markers, but not with the lysosomal markers. Treatment with three distinct HSP90 inhibitors, radicicol, macbecin and 17-DMAG significantly enhanced α(2C)-AR cell surface levels at 37°C, but these inhibitors had no effect at 30°C. Similar results were obtained after decreasing the HSP90 cellular levels using specific siRNA. Co-immunoprecipitation experiments demonstrated that α(2C)-AR interacts with HSP90 and this interaction is decreased at 30°C. The contractile response to endogenous α(2C)-AR stimulation in rat tail artery was also enhanced at reduced temperature. Similar to HEK293T cells, HSP90 inhibition increased the α(2C)-AR contractile effects only at 37°C. Moreover, exposure to low-temperature of vascular smooth muscle cells from rat tail artery decreased the cellular levels of HSP90, but did not change HSP70 levels. These data demonstrate that exposure to low-temperature augments the α(2C)-AR transport to the plasma membrane by releasing the inhibitory activity of HSP90 on the receptor traffic, findings which may have clinical relevance for the diagnostic and treatment of Raynaud Phenomenon.


Subject(s)
HSP90 Heat-Shock Proteins/physiology , Receptors, Adrenergic, alpha-2/metabolism , Animals , Arteries , Benzoquinones/pharmacology , Cell Membrane/metabolism , Cells, Cultured , Enzyme Inhibitors/pharmacology , Humans , Kidney/cytology , Kidney/metabolism , Lactams, Macrocyclic/pharmacology , Macrolides/pharmacology , Male , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Protein Transport , Protein-Tyrosine Kinases/antagonists & inhibitors , RNA, Small Interfering/genetics , Rats , Rats, Wistar , Receptors, Adrenergic, alpha-2/genetics , Subcellular Fractions , Temperature
20.
Endocrinology ; 151(11): 5403-14, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20861238

ABSTRACT

Central Gαz and Gαq protein-gated pathways play a pivotal role in modulating (inhibiting vs. stimulating, respectively) vasopressin release and urine output; these studies examined the role of brain Gαz/Gαq proteins in the regulation of vasopressin secretion during high-salt challenge. We examined the effects of 21-d normal or high salt intake on plasma vasopressin levels, daily sodium and water balance, and brain Gαz and Gαq protein levels in male Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. Additionally, the effect of central Gαq protein down-regulation on these parameters and the diuretic response evoked by pharmacological [nociceptin/orphanin FQ; 5.5 nmol intracerebroventricularly (icv)] and physiological stimuli (isotonic-saline volume expansion, 5% bodyweight, iv) was examined. After 21 d of high salt intake, DSS, but not SD or DSR rats, exhibited vasopressin dysregulation, as evidenced by elevated plasma vasopressin levels (P < 0.05), marked positive water (and sodium) balance (P < 0.05), and an impaired diuretic response to pharmacological and physiological stimuli (P < 0.05). Chronic high salt intake (21 d) evoked down-regulation of Gαq (P < 0.05), but not Gαz, proteins in the hypothalamic paraventricular nucleus of SD and DSR, but not DSS rats. In salt-challenged (21 d) DSS rats, acute oligodeoxynucleotide-mediated down-regulation of central Gαq proteins returned plasma vasopressin to control levels (P < 0.05), decreased salt-induced water retention (P < 0.05), and restored the profound diuretic responses to pharmacological and physiological stimuli (P < 0.05). Therefore, the down-regulation of PVN Gαq proteins plays a critical counter-regulatory role in preventing vasopressin hypersecretion in salt-resistant phenotypes and may represent a new therapeutic target in pathophysiological states featuring vasopressin dysregulation.


Subject(s)
Body Water/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Vasopressins/metabolism , Analysis of Variance , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Male , Opioid Peptides/pharmacology , Paraventricular Hypothalamic Nucleus/drug effects , Random Allocation , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology , Sodium Chloride, Dietary/metabolism , Nociceptin
SELECTION OF CITATIONS
SEARCH DETAIL
...