Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 606: 120846, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34216769

ABSTRACT

Essential oils (EOs) of Thymus capitatus (Th) carvacrol chemotype and Origanum vulgare (Or) thymol and carvacrol chemotype were encapsulated in biocompatible poly(ε-caprolactone) nanocapsules (NCs). These nanosystems exhibited antibacterial, antifungal, and antibiofilm activities against Staphylococcus aureus, Escherichia coli, and Candida albicans. Th-NCs and Or-NCs were more effective against all tested strains than pure EOs and at the same time were not cytotoxic on HaCaT (T0020001) human keratinocyte cell line. The genotoxic effects of EO-NCs and EOs on HaCaT were evaluated using an alkaline comet assay for the first time, revealing that Th-NCs and Or-NCs did not induce DNA damage compared with untreated control HaCaT cells in vitro after 24 h. The cells morphological changes were assessed by label-free live cell Raman imaging. This study demonstrate the ability of poly(ε-caprolactone) nanocapsules loaded with thyme and oregano EOs to reduce microbial and biofilm growth and could be an ecological alternative in the development of new antimicrobial strategies.


Subject(s)
Nanocapsules , Oils, Volatile , Anti-Bacterial Agents/toxicity , Biofilms , Cell Line , DNA Damage , Humans , Keratinocytes , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Polyesters
2.
Antibiotics (Basel) ; 10(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401404

ABSTRACT

Nanotechnology is a new frontier of this century that finds applications in various fields of science with important effects on our life and on the environment. Nanoencapsulation of bioactive compounds is a promising topic of nanotechnology. The excessive use of synthetic compounds with antifungal activity has led to the selection of resistant fungal species. In this context, the use of plant essential oils (EOs) with antifungal activity encapsulated in ecofriendly nanosystems could be a new and winning strategy to overcome the problem. We prepared nanoencapsules containing the essential oils of Origanum vulgare (OV) and Thymus capitatus (TC) by the nanoprecipitation method. The colloidal suspensions were characterized for size, polydispersity index (PDI), zeta potential, efficiency of encapsulation (EE) and loading capacity (LC). Finally, the essential oil nanosuspensions were assayed against a panel of fourteen fungal strains belonging to the Ascomycota and Basidiomycota phyla. Our results show that the nanosystems containing thyme and oregano essential oils were active against various fungal strains from natural environments and materials. In particular, the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were two to four times lower than the pure essential oils. The aqueous, ecofriendly essential oil nanosuspensions with broad-spectrum antifungal activity could be a valid alternative to synthetic products, finding interesting applications in the agri-food and environmental fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...