Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Front Cell Neurosci ; 18: 1409405, 2024.
Article in English | MEDLINE | ID: mdl-38994326

ABSTRACT

The fovea of the human retina, a specialization for acute and color vision, features a high concentration of cone photoreceptors. A pit on the inner retinal aspect is created by the centrifugal migration of post-receptoral neurons. Foveal cells are specified early in fetal life, but the fovea reaches its final configuration postnatally. Pre-term birth retards migration resulting in a small pit, a small avascular zone, and nearly continuous inner retinal layers. To explore the involvement of Müller glia, we used serial-section electron microscopic reconstructions to examine the morphology and neural contacts of Müller glia contacting a single foveal cone in a 28-year-old male organ donor born at 28 weeks of gestation. A small non-descript foveal avascular zone contained massed glial processes that included a novel class of 'inner' Müller glia. Similar to classic 'outer' Müller glia that span the retina, inner Müller glia have bodies in the inner nuclear layer (INL). These cells are densely packed with intermediate filaments and insert processes between neurons. Unlike 'outer' Müller glia, 'inner' Müller glia do not reach the external limiting membrane but instead terminate at the outer plexiform layer. One completely reconstructed inner cell ensheathed cone pedicles and a cone-driven circuit of midget bipolar and ganglion cells. Inner Müller glia outnumber foveal cones by 1.8-fold in the outer nuclear layer (221,448 vs. 123,026 cells/mm2). Cell bodies of inner Müller glia outnumber those of outer Müller glia by 1.7-fold in the INL (41,872 vs. 24,631 cells/ mm2). Müller glia account for 95 and 80% of the volume of the foveal floor and Henle fiber layer, respectively. Determining whether inner cells are anomalies solely resulting from retarded lateral migration of inner retinal neurons in pre-term birth requires further research.

2.
Invest Ophthalmol Vis Sci ; 65(8): 40, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39042400

ABSTRACT

Purpose: In aging and early-intermediate age-related macular degeneration (AMD), rod-mediated dark adaptation (RMDA) slows more at 5° superior than at 12°. Using optical coherence tomography angiography (OCTA), we asked whether choriocapillaris flow deficits are related to distance from the fovea. Methods: Persons ≥60 years stratified for AMD via the Age-Related Eye Disease Study's nine-step system underwent RMDA testing. Two adjacent 4.4° × 4.4° choriocapillaris OCTA slabs were centered on the fovea and 12° superior. Flow signal deficits (FD%) in concentric arcs (outer radii in mm, 0.5, 1.5, 2.2, 4.0, and 5.0 superior) were correlated with rod intercept time (RIT) and best-corrected visual acuity (BCVA). Results: In 366 eyes (170 normal, 111 early AMD, 85 intermediate AMD), FD% was significantly worse with greater AMD severity in all regions (overall P < 0.05) and poorest under the fovea (P < 0.0001). In pairwise comparisons, FD% worsened with greater AMD severity (P < 0.05) at distances <2.2 mm. At greater distances, eyes with intermediate, but not early AMD differed from normal eyes. Foveal FD% was more strongly associated with longer RIT at 5° (r = 0.52) than RIT at 12° (r = 0.39) and BCVA (r = 0.21; all P < 0.0001). Choroidal thickness was weakly associated with longer RIT at 5° and 12° (r = 0.10-0.20, P < 0.05) and not associated with AMD severity. Conclusions: Reduced transport across the choriocapillaris-Bruch's membrane-retinal pigment epithelium complex, which contributes to drusen formation under the macula lutea (and fovea), may also reduce retinoid resupply to rods encircling the high-risk area. FD% has potential as a functionally validated imaging biomarker for AMD emergence.


Subject(s)
Aging , Choroid , Dark Adaptation , Fluorescein Angiography , Fovea Centralis , Macular Degeneration , Tomography, Optical Coherence , Visual Acuity , Humans , Choroid/blood supply , Choroid/diagnostic imaging , Tomography, Optical Coherence/methods , Male , Aged , Female , Visual Acuity/physiology , Fovea Centralis/diagnostic imaging , Fovea Centralis/pathology , Fovea Centralis/blood supply , Fovea Centralis/physiopathology , Aging/physiology , Middle Aged , Macular Degeneration/physiopathology , Fluorescein Angiography/methods , Aged, 80 and over , Dark Adaptation/physiology
3.
Ophthalmologica ; : 1-13, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38599207

ABSTRACT

INTRODUCTION: The aims of the study were to describe baseline quantitative (short-wavelength) autofluorescence (qAF) findings in a large pseudophakic cohort at age-related macular degeneration (AMD)'s beginnings and to assess qAF8 as an outcome measure and evaluate Age-Related Eye Disease Study (AREDS) and Beckman grading systems. METHODS: In the ALSTAR2 baseline cohort (NCT04112667), 346 pseudophakic eyes of 188 persons (74.0 ± 5.5 years) were classified as normal (N = 160 by AREDS, 158 by Beckman), early AMD (eAMD) (N = 104, 66), and intermediate AMD (iAMD) (N = 82, 122). Groups were compared via mean qAF intensities in a 6°-8° annulus (qAF8) and maps of differences between observations and the overall mean, divided by standard deviation (Z-score). RESULTS: qAF8 did not differ significantly among diagnostic groups by either stratification (p = 0.0869 AREDS; p = 0.0569 by Beckman). Notably, 45 eyes considered eAMD by AREDS became iAMD by Beckman. For AREDS-stratified eyes, Z-score maps showed higher centrally located qAF for normal, near the mean in eAMD, and lower values for iAMD. Maps deviated from this pattern for Beckman-stratified eyes. CONCLUSIONS: In a large sample of pseudophakic eyes, qAF8 does not differ overall from normal aging to iAMD but also does not capture the earliest AMD activity in the macula lutea. AREDS classification gives results more consistent with a slow decline in histologic autofluorescence than Beckman classification.

4.
Invest Ophthalmol Vis Sci ; 65(3): 4, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38466281

ABSTRACT

A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.


Subject(s)
Geographic Atrophy , Macula Lutea , Macular Degeneration , Humans , Adult , Aged , Retina , Retinal Cone Photoreceptor Cells
6.
Invest Ophthalmol Vis Sci ; 64(15): 35, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133501

ABSTRACT

Purpose: Despite the centrality of the retinal pigment epithelium (RPE) in vision and retinopathy our picture of RPE morphology is incomplete. With a volumetric reconstruction of human RPE ultrastructure, we aim to characterize major membranous features including apical processes and their interactions with photoreceptor outer segments, basolateral infoldings, and the distribution of intracellular organelles. Methods: A parafoveal retinal sample was acquired from a 21-year-old male organ donor. With serial block-face scanning electron microscopy, a tissue volume from the inner-outer segment junction to basal RPE was captured. Surface membranes and complete internal ultrastructure of an individual RPE cell were achieved with a combination of manual and automated segmentation methods. Results: In one RPE cell, apical processes constitute 69% of the total cell surface area, through a dense network of over 3000 terminal branches. Single processes contact several photoreceptors. Basolateral infoldings facing the choriocapillaris resemble elongated filopodia and comprise 22% of the cell surface area. Membranous tubules and sacs of endoplasmic reticulum represent 20% of the cell body volume. A dense basal layer of mitochondria extends apically to partly overlap electron-dense pigment granules. Pores in the nuclear envelope form a distinct pattern of rows aligned with chromatin. Conclusions: Specialized membranes at the apical and basal side of the RPE cell body involved in intercellular uptake and transport represent over 90% of the total surface area. Together with the polarized distribution of organelles within the cell body, these findings are relevant for retinal clinical imaging, therapeutic approaches, and disease pathomechanisms.


Subject(s)
Retina , Retinal Pigment Epithelium , Humans , Young Adult , Epithelial Cells , Organelles , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism , Male
7.
Biomed Opt Express ; 14(10): 5512-5527, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37854576

ABSTRACT

Mitochondria are candidate reflectivity signal sources in optical coherence tomography (OCT) retinal imaging. Here, we use deep-learning-assisted volume electron microscopy of human retina and in vivo imaging to map mitochondria networks in the outer plexiform layer (OPL), where photoreceptors synapse with second-order interneurons. We observed alternating layers of high and low mitochondrial abundance in the anatomical OPL and adjacent inner nuclear layer (INL). Subcellular resolution OCT imaging of human eyes revealed multiple reflective bands that matched the corresponding INL and combined OPL sublayers. Data linking specific mitochondria to defined bands in OCT may help improve clinical diagnosis and the evaluation of mitochondria-targeting therapies.

8.
Invest Ophthalmol Vis Sci ; 64(12): 41, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37768273

ABSTRACT

Purpose: Progress toward treatment and prevention of age-related macular degeneration (AMD) requires imaging end points that relate to vision. We investigated choriocapillaris flow signal deficits (FD%) and visual function in eyes of individuals aged ≥60 years, with and without AMD. Methods: One eye of each participant in the baseline visit of the Alabama Study on Early Age-Related Macular Degeneration 2 (ALSTAR2; NCT04112667) was studied. AMD presence and severity was determined using the Age-Related Eye Disease Study (AREDS) grading system. FD% was quantified using macular spectral domain optical coherence tomography angiography (OCTA) scans. Vision tests included rod-mediated dark adaptation (RMDA), best-corrected visual acuity, and contrast sensitivity (photopic and mesopic), and microperimetric light sensitivity (scotopic, mesopic, and photopic). Presence of subretinal drusenoid deposits (SDD) was determined using multimodal imaging. Results: In 410 study eyes of 410 participants (mean [SD] age = 71.7 years [5.9]), FD% was higher in early AMD (mean [SD] = 54.0% [5.5], N = 122) and intermediate AMD (59.8% [7.4], N = 92), compared to normal (52.1% [5.3], N = 196) eyes. Among visual functions evaluated, RMDA showed the strongest association with FD% (r = 0.35, P < 0.0001), followed by contrast sensitivity (r = -0.22, P < 0.0001). Eyes with SDD had worse FD% (58.3% [7.4], N = 87), compared to eyes without SDD (53.4% [6.0], N = 323, P = < 0.0001). Conclusions: Choriocapillaris FD% were associated with AMD severity and with impaired vision, especially RMDA. Reduced metabolic transport and exchange across the choriocapillaris-Bruch's membrane retinal pigment epithelium (RPE) complex, a causal factor for high-risk soft drusen formation, also may impair photoreceptor sustenance from the circulation. This includes retinoid resupply, essential to dynamic rod function.


Subject(s)
Macular Degeneration , Retinal Drusen , Humans , Dark Adaptation , Retina , Tomography, Optical Coherence/methods , Choroid
9.
Ophthalmol Sci ; 3(2): 100263, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36864830

ABSTRACT

Purpose: Quantification of retinal xanthophyll carotenoids in eyes with and without age-related macular degeneration (AMD) via macular pigment optical volume (MPOV), a metric for xanthophyll abundance from dual wavelength autofluorescence, plus correlations to plasma levels, could clarify the role of lutein (L) and zeaxanthin (Z) in health, AMD progression, and supplementation strategies. Design: Cross-sectional observational study (NCT04112667). Participants: Adults ≥ 60 years from a comprehensive ophthalmology clinic, with healthy maculas or maculas meeting fundus criteria for early or intermediate AMD. Methods: Macular health and supplement use was assessed by the Age-related Eye Disease Study (AREDS) 9-step scale and self-report, respectively. Macular pigment optical volume was measured from dual wavelength autofluorescence emissions (Spectralis, Heidelberg Engineering). Non-fasting blood draws were assayed for L and Z using high-performance liquid chromatography. Associations among plasma xanthophylls and MPOV were assessed adjusting for age. Main Outcome Measures: Age-related macular degeneration presence and severity, MPOV in fovea-centered regions of radius 2.0° and 9.0°; plasma L and Z (µM/ml). Results: Of 809 eyes from 434 persons (89% aged 60-79, 61% female), 53.3% eyes were normal, 28.2% early AMD, and 18.5% intermediate AMD. Macular pigment optical volume 2° and 9° were similar in phakic and pseudophakic eyes, which were combined for analysis. Macular pigment optical volume 2° and 9° and plasma L and Z were higher in early AMD than normal and higher still in intermediate AMD (P < 0.0001). For all participants, higher plasma L was correlated with higher MPOV 2° (Spearman correlation coefficient [Rs] = 0.49; P < 0.0001). These correlations were significant (P < 0.0001) but lower in normal (Rs = 0.37) than early and intermediate AMD (Rs = 0.52 and 0.51, respectively). Results were similar for MPOV 9°. Plasma Z, MPOV 2°, and MPOV 9° followed this same pattern of associations. Associations were not affected by supplement use or smoking status. Conclusions: A moderate positive correlation of MPOV with plasma L and Z comports with regulated xanthophyll bioavailability and a hypothesized role for xanthophyll transfer in soft drusen biology. An assumption that xanthophylls are low in AMD retina underlies supplementation strategies to reduce progression risk, which our data do not support. Whether higher xanthophyll levels in AMD are due to supplement use cannot be determined in this study.

10.
Ophthalmol Sci ; 3(3): 100277, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36970115

ABSTRACT

Purpose: Ultrahigh resolution spectral domain-OCT (UHR SD-OCT) enables in vivo visualization of micrometric structural markers which differentially associate with normal aging versus age-related macular degeneration (AMD). This study explores the hypothesis that UHR SD-OCT can detect and quantify sub-retinal pigment epithelium (RPE) deposits in early AMD, separating AMD pathology from normal aging. Design: Prospective cross-sectional study. Participants: A total of 53 nonexudative (dry) AMD eyes from 39 patients, and 63 normal eyes from 39 subjects. Methods: Clinical UHR SD-OCT scans were performed using a high-density protocol. Exemplary high-resolution histology and transmission electron microscopy images were obtained from archive donor eyes. Three trained readers evaluated and labeled outer retina morphological features, including the appearance of a hyporeflective split within the RPE-RPE basal lamina (RPE-BL)-Bruch's membrane (BrM) complex on UHR brightness (B)-scans. A semi-automatic segmentation algorithm measured the thickness of the RPE-BL-BrM split/hyporeflective band. Main Outcome Measures: Qualitative description of outer retinal morphological changes on UHR SD-OCT B-scans; the proportion of the RPE-BL-BrM complex with visible split (%) and the thickness of the resulting hyporeflective band (µm). Results: In young normal eyes, UHR SD-OCT consistently revealed an RPE-BL-BrM split/hyporeflective band. Its visibility and thickness were less in eyes of advanced age. However, the split/hyporeflective band was again visible in early AMD eyes. Both qualitative reading and quantitative thickness measurements showed significantly elevated visibility and thickness of the RPE-BL-BrM split/hyporeflective in early AMD eyes compared to age-matched controls. Conclusions: Our imaging results strongly support the hypothesis that appearance of the RPE-BL-BrM split/hyporeflective band in older subjects is dominated by the BL deposit, an indicator of early AMD well known from histology. Ultrahigh resolution SD-OCT can be used to investigate physiological aging as well as early AMD pathology in clinical imaging studies. Developing quantifiable markers associated with disease pathogenesis and progression can facilitate drug discovery, as well as reduce clinical trial times. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

11.
Ophthalmol Sci ; 3(2): 100274, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36875335

ABSTRACT

Purpose: We evaluate the impact of test target location in assessing rod-mediated dark adaptation (RMDA) along the transition from normal aging to intermediate age-related macular degeneration (AMD). We consider whether RMDA slows because the test locations are near mechanisms leading to or resulting from high-risk extracellular deposits. Soft drusen cluster under the fovea and extend to the inner ring of the ETDRS grid where rods are sparse. Subretinal drusenoid deposits (SDDs) appear first in the outer superior subfield of the ETDRS grid where rod photoreceptors are maximal and spread toward the fovea without covering it. Design: Cross-sectional. Participants: Adults ≥ 60 years with normal older maculas, early AMD, or intermediate AMD as defined by the Age-Related Eye Disease Study (AREDS) 9-step and Beckman grading systems. Methods: In 1 eye per participant, RMDA was assessed at 5° and at 12° in the superior retina. Subretinal drusenoid deposit presence was identified with multi-modal imaging. Main Outcome Measures: Rod intercept time (RIT) as a measure of RMDA rate at 5° and 12°. Results: In 438 eyes of 438 persons, RIT was significantly longer (i.e., RMDA is slower) at 5° than at 12° for each AMD severity group. Differences among groups were bigger at 5° than at 12°. At 5°, SDD presence was associated with longer RIT as compared to SDD absence at early and intermediate AMD but not in normal eyes. At 12°, SDD presence was associated with longer RIT in intermediate AMD only, and not in normal or early AMD eyes. Findings were similar in eyes stratified by AREDS 9-step and Beckman systems. Conclusions: We probed RMDA in relation to current models of deposit-driven AMD progression organized around photoreceptor topography. In eyes with SDD, slowed RMDA occurs at 5° where these deposits typically do not appear until later in AMD. Even in eyes lacking detectable SDD, RMDA at 5° is slower than at 12°. The effect at 5° may be attributed to mechanisms associated with the accumulation of soft drusen and precursors under the macula lutea throughout adulthood. These data will facilitate the design of efficient clinical trials for interventions that aim to delay AMD progression.

12.
Transl Vis Sci Technol ; 11(7): 17, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35861686

ABSTRACT

Purpose: We hypothesize the first visual dysfunction in transitioning to early and intermediate age-related macular degeneration (AMD) is delayed rod-mediated dark adaptation (RMDA), owing to impaired photoreceptor sustenance from the circulation. This analysis from the Alabama Study on Early Age-related Macular Degeneration 2 provides insight on our framework's validity, comparing RMDA and other visual tests among older normal, early, and intermediate AMD eyes. Methods: AMD disease severity was determined via fundus photos using the Age-Related Eye Disease Study nine-step system. Visual functions evaluated were RMDA 5°, acuity, contrast sensitivity (photopic, mesopic), and light sensitivity for a macular grid (scotopic, mesopic, photopic). Presence versus absence of subretinal drusenoid deposits (SDD) was identified through multimodal imaging. Results: One eye from each of 481 persons (mean age, 72 years) was evaluated. All visual functions were significantly worse with increasing AMD disease severity. Using z-scores to standardize visual function measures across groups, the greatest difference in probability density functions between older normal and intermediate AMD was for RMDA. Early and intermediate AMD eyes with SDD present had longer rod intercept times than eyes with SDD absent. SDD absent eyes also exhibited delayed RMDA and wide probability density functions relative to normal eyes. Conclusions: Among the visual functions evaluated, RMDA best discriminates among normal, early AMD, and intermediate AMD eyes. The Alabama Study on Early Age-related Macular Degeneration 2 will evaluate whether AMD's natural history confirms our hypothesis at the 3-year follow-up. Translational Relevance: Results support a sequence of visual function impairments in aging and AMD, suggesting RMDA as a promising outcome for evaluating interventions in early disease.


Subject(s)
Macular Degeneration , Aged , Dark Adaptation , Humans , Macular Degeneration/diagnosis , Retina , Visual Acuity
13.
Am J Ophthalmol ; 240: 99-114, 2022 08.
Article in English | MEDLINE | ID: mdl-35192790

ABSTRACT

PURPOSE: To evaluate hypotheses about the role of acquired vitelliform lesion (AVL) in age-related macular degeneration pathophysiology. DESIGN: Laboratory histology study; retrospective, observational case series. METHODS: Two donor eyes in a research archive with AVL and age-related macular degeneration were analyzed with light and electron microscopy for AVL content at locations matched to ex vivo B-scans. A retrospective, observational clinical cohort study of 42 eyes of 30 patients at 2 referral clinics determined the frequency of optical coherence tomography features stratified by AVL fate. RESULTS: Histologic and clinical cases showed subretinal drusenoid deposit and drusen. Ultrastructural AVL components in 2 donor eyes included retinal pigment epithelium (RPE) organelles (3%-22% of volume), outer segments (2%-10%), lipid droplets (0.2%-12%), and a flocculent material (57%-59%). Of 48 AVLs (mean follow-up 46 ± 39 months), 50% collapsed to complete RPE and outer retinal atrophy, 38% were stable, 10% resorbed, and 2% developed neovascularization. The Early Treatment Diabetic Retinopathy Study grid central subfield contained 77% of AVLs. Hyperreflective foci, ellipsoid zone disruption, and hyperreflective thickening of the RPE-basal lamina-Bruch membrane band were common at maximum AVL expansion. Collapsing and noncollapsing AVLs had different growth rates (rapid vs slow, respectively). CONCLUSIONS: AVL deposits contain unexpectedly low levels of RPE organelles and outer segments. Subfoveal predilection, reflectivity on optical coherence tomography, hyperautofluorescence, yellow color, and growth-regression phases suggest dysregulation of lipid transfer pathways specific to cone photoreceptors and supporting cells in formation of AVL deposit, analogous to drusen and subretinal drusenoid deposit. Prediction of AVL outcomes via growth rates should be confirmed in larger clinical studies.


Subject(s)
Macular Degeneration , Retinal Drusen , Cohort Studies , Fluorescein Angiography , Humans , Macular Degeneration/pathology , Retinal Drusen/diagnosis , Retinal Drusen/pathology , Retinal Pigment Epithelium/pathology , Retrospective Studies , Tomography, Optical Coherence/methods
14.
Invest Ophthalmol Vis Sci ; 62(10): 34, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34448806

ABSTRACT

Purpose: By optical coherence tomography (OCT) imaging, hyperreflective foci (HRF) indicate progression risk for advanced age-related macular degeneration (AMD) and are in part attributable to ectopic retinal pigment epithelium (RPE). We hypothesized that ectopic RPE are molecularly distinct from in-layer cells and that their cross-retinal course follows Müller glia. Methods: In clinical OCT (61 eyes, 44 patients with AMD, 79.4 ± 7.7 years; 29 female; follow-up = 4.7 ± 0.9 years), one HRF type, RPE plume (n = 129 in 4 morphologies), was reviewed. Twenty eyes of 20 donors characterized by ex vivo OCT were analyzed by histology (normal, 4; early/intermediate AMD, 7; geographic atrophy, 6; neovascular AMD, 3). Cryosections were stained with antibodies to retinoid (RPE65, CRALPB) and immune (CD68, CD163) markers. In published RPE cellular phenotypes, red immunoreactivity was assessed semiquantitatively by one observer (none, some cells, all cells). Results: Plume morphology evolved over time and many resolved (40%). Trajectories of RPE plume and cellular debris paralleled Müller glia, including near atrophy borders. RPE corresponding to HRF lost immunoreactivity for retinoid markers and gained immunoreactivity for immune markers. Aberrant immunoreactivity appeared in individual in-layer RPE cells and extended to all abnormal phenotypes. Müller glia remained CRALBP positive. Plume cells approached and contacted retinal capillaries. Conclusions: HRF are indicators not predictors of overall disease activity. Gain and loss of function starts with individual in-layer RPE cells and extends to all abnormal phenotypes. Evidence for RPE transdifferentiation, possibly due to ischemia, supports a proposed process of epithelial-mesenchyme transition. Data can propel new biomarkers and therapeutic strategies for AMD.


Subject(s)
Fluorescein Angiography/methods , Refraction, Ocular/physiology , Retinal Pigment Epithelium/pathology , Tomography, Optical Coherence/methods , Wet Macular Degeneration/diagnosis , Aged , Aged, 80 and over , Cell Transdifferentiation , Disease Progression , Female , Follow-Up Studies , Fundus Oculi , Humans , Male , Prognosis , Time Factors , Wet Macular Degeneration/physiopathology
15.
Invest Ophthalmol Vis Sci ; 62(1): 33, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33512402

ABSTRACT

Purpose: Basal linear deposit (BLinD) is a thin layer of soft drusen material. To elucidate the biology of extracellular deposits conferring age-related macular degeneration (AMD) progression risk and inform multimodal clinical imaging based on optical coherence tomography (OCT), we examined lipid content and regional prevalence of BLinD, soft drusen, pre-BLinD, and subretinal drusenoid deposit (SDD) in AMD and non-AMD aged eyes. We estimated BLinD volume and illustrated its relation to type 1 macular neovascularization (MNV). Methods: Donor eyes were classified as early to intermediate AMD (n = 25) and age-matched controls (n = 54). In high-resolution histology, we assessed BLinD/soft drusen thickness at 836 and 1716 locations in AMD and control eyes, respectively. BLinD volume was estimated using solid geometry in donor eyes, one clinically characterized. Results: BLinD, drusen, type 1 MNV, and fluid occupy the sub-RPE-basal laminar space. BLinD volume in a 3-mm diameter circle may be as much as 0.0315 mm3. Osmophilic lipid was more concentrated in BLinD/drusen than SDD. In the fovea, BLinD/drusen was prevalent in AMD eyes; pre-BLinD was prevalent in control eyes. SDD was low in the fovea and high in perifovea, especially in AMD eyes. Conclusions: Although invisible, BLinD may presage type 1 MNV. BLinD volume approaches the criterion OCT drusen volume of 0.03 mm3 for AMD progression risk. BLinD culminates years of subfoveal lipid accumulation. SDD is detected relatively late in life, with currently unknown precursors. Deposit topography suggests one outer retinal lipid recycling system serving specialized cone and rod physiology, and its dysregulation in AMD is due to impaired transfer to the circulation.


Subject(s)
Basement Membrane/pathology , Macular Degeneration/pathology , Retinal Drusen/pathology , Retinal Pigment Epithelium/pathology , Aged , Aged, 80 and over , Biometry , Female , Humans , Male , Middle Aged , Retrospective Studies , Tissue Donors , Tomography, Optical Coherence/methods
16.
Invest Ophthalmol Vis Sci ; 61(8): 46, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32729911

ABSTRACT

Purpose: We assessed the association between the abundance of macular xanthophyll carotenoid pigment using dual-wavelength autofluorescence and multimodal vision testing including rod-mediated dark adaptation (RMDA), a measure of retinoid re-supply, in adults ≥60 years old with and without age-related macular degeneration (AMD). Methods: AMD severity was determined using the nine-step Age-Related Eye Disease Study grading. Tests probed cones (best-corrected visual acuity, contrast sensitivity), cones and rods (low-luminance visual acuity, low-luminance deficit, mesopic light sensitivity), or rods only (scotopic light sensitivity, RMDA). Signal attenuation by macular pigment optical density (MPOD) was estimated using a ratio of blue and green autofluorescence signal to yield mean MPOD in a 1°-diameter fovea-centered disk, mean MPOD in a 2°-diameter disk centered on a perifoveal RMDA test location, and macular pigment optical volume (MPOV, or integrated MPOD) in a 4°-diameter fovea-centered disk. Age-adjusted associations between vision and imaging measures were determined. Results: In 88 eyes of 88 subjects (age, 74.9 ± 5.8 years) with normal eyes (n = 32), early AMD (n = 23), or intermediate AMD (n = 33), foveal and perifoveal MPOD and MPOV were higher in the AMD eyes than in the normal eyes. At the RMDA test location, higher MPOD was unrelated to AMD severity but was associated with faster RMDA. Conclusions: In older adults with and without AMD, higher macular xanthophyll concentrations are associated with better best-corrected visual acuity and RMDA. Data are consistent with a model of cone resilience and rod vulnerability in aging and AMD and can be further explored in a larger sample study.


Subject(s)
Dark Adaptation/physiology , Macular Degeneration , Optical Imaging/methods , Xanthophylls , Aged , Contrast Sensitivity/physiology , Female , Humans , Macular Degeneration/diagnosis , Macular Degeneration/metabolism , Macular Degeneration/physiopathology , Male , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Severity of Illness Index , Vision Tests/methods , Vision, Ocular/physiology , Visual Acuity , Xanthophylls/analysis , Xanthophylls/metabolism
17.
Ophthalmol Retina ; 4(11): 1059-1068, 2020 11.
Article in English | MEDLINE | ID: mdl-32389889

ABSTRACT

PURPOSE: Hyperreflective foci (HRF) are OCT biomarkers for the progression of nonneovascular age-related macular degeneration (AMD) attributed to anteriorly migrated retinal pigment epithelial cells. We examined associations between rod- and cone-mediated vision and HRF plus smaller hyperreflective specks (HRS); we identified a histologic candidate for HRS. DESIGN: Cross-sectional study and histologic survey. PARTICIPANTS: Patients with healthy maculae (n = 34), early AMD (n = 26), and intermediate AMD (n = 41). METHODS: AMD severity was determined by color fundus photography. In OCT scans, HRF and HRS were counted manually. Vision tests probed cones (best-corrected visual acuity [VA], contrast sensitivity), mixed cones and rods (low-luminance VA, low-luminance deficit, mesopic light sensitivity), or rods (scotopic light sensitivity, rod-mediated dark adaptation [RMDA]). An online AMD histopathologic resource was reviewed. MAIN OUTCOME MEASURES: Vision in eyes assessed for HRF and HRS; histologic candidate for HRS. RESULTS: In 101 eyes of 101 patients, HRF and HRS were identified in 25 and 95 eyes, respectively, with good reliability. Hyperreflective foci were present but sparse in healthy eyes, infrequent in early AMD eyes, and frequent but highly variable among intermediate AMD eyes (mean±standard deviation [SD] number per eye, 0.1 ± 0.2, 0.2 ± 0.5, and 1.9 ± 3.4 for healthy, early AMD, and intermediate AMD eyes, respectively). Hyperreflective specks outnumbered HRF in all groups (mean±SD, 4.5 ± 3.2, 6.3 ± 5.8, and 19.4 ± 22.4, respectively). Delayed RMDA was associated strongly with more HRF and HRS (P < 0.0001). Hyperreflective foci also were associated with worse low-luminance VA (P = 0.0117). Hyperreflective specks were associated with worse contrast sensitivity (P = 0.0278), low-luminance VA (P = 0.0010), low-luminance deficit (P = 0.0031), and mesopic (P = 0.0018) and scotopic (P < 0.0001) sensitivity. By histologic analysis, cone lipofuscin was found in outer retinal layers of 25% of healthy aged eyes. CONCLUSIONS: Hyperreflective foci and HRS are markers of cellular activity associated with visual dysfunction, especially delayed RMDA, an AMD risk indicator assessing efficiency of retinoid resupply. Hyperreflective specks may represent lipofuscin translocating inwardly within cones. HRF and HRS may serve as structural end points in clinical trials targeting AMD stages earlier than atrophy expansion. These results should be confirmed in a larger sample.


Subject(s)
Dark Adaptation/physiology , Retinal Pigment Epithelium/pathology , Retinal Rod Photoreceptor Cells/physiology , Wet Macular Degeneration/physiopathology , Aged , Aged, 80 and over , Cross-Sectional Studies , Disease Progression , Female , Humans , Male , Middle Aged , Prognosis , Retinal Pigment Epithelium/physiopathology , Tomography, Optical Coherence/methods , Wet Macular Degeneration/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL