Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(11): 4179-4186, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487232

ABSTRACT

Since the pioneering electron counting rule for borane clusters was proposed by Wade, the structures and bonding of boron clusters and their derivatives have been elegantly rationalised. However, this rule and its modified versions faced problems explaining the electronic structures of less spherical deltahedra, unlike the core geometries of borate dianions [BnHn]2- (n = 6-12). Herein, we report the isolation of a series of osmaborane clusters [(Cp*Os)2BnHn], 1-5, (n = 6-10) by the thermolysis of an in situ generated intermediate, obtained from the rapid condensation of [Cp*OsBr2]2 and [LiBH4·THF], with [BH3·THF] or [BH3·SMe2]. Interestingly, all these clusters show unusual less spherical deltahedral shapes that can be generated from canonical [BnHn]2- (n = 8-12) shapes by doing diamond-square-diamond (DSD) rearrangements. The DSD rearrangements led to the generation of higher degree vertices, which are occupied by Os atoms and also generated Os-Os bonds in these clusters. Theoretical calculations revealed that these Cp*Os⋯OsCp* interactions in clusters 1-5 played a crucial role in their structural shape and electron count. These less spherical deltahedral clusters are rare, and most significantly, clusters 1-5 with (n-1) skeleton electron pairs (SEPs) do not follow Wade-Mingos electron counting rules and can be classified as hypoelectronic closo clusters.

2.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770666

ABSTRACT

In an effort to synthesize metallaheteroborane clusters of higher nuclearity, the reactivity of metallaheteroboranes, nido-[(Cp*M)2B6S2H4(CS3)] (Cp* = C5Me5) (1: M = Co; 2: M = Rh) with various metal carbonyls have been investigated. Photolysis of nido-1 and nido-2 with group 6 metal carbonyls, M'(CO)5.THF (M' = Mo or W) were performed that led to the formation of a series of adducts [(Cp*M)2B6S2H4(CS3){M'(CO)5}] (3: M = Co, M' = Mo; 4: M = Co, M' = W; 5: M = Rh, M' = Mo; 6: M = Rh, M' = W) instead of cluster expansion reactions. In these adducts, the S atom of C=S group of di(thioboralane)thione {B2CS3} moiety is coordinated to M'(CO)5 (M = Mo or W) in η1-fashion. On the other hand, thermolysis of nido-1 with Ru3(CO)12 yielded one fused metallaheteroborane cluster [{Ru(CO)3}3S{Ru(CO)}{Ru(CO)2}Co2B6SH4(CH2S2){Ru(CO)3}2S], 7. This 20-vertex-fused cluster is composed of two tetrahedral {Ru3S} and {Ru2B2}, a flat butterfly {Ru3S} and one octadecahedron {Co2RuB7S} core with one missing vertex, coordinated to {Ru2SCH2S2} through two boron and one ruthenium atom. On the other hand, the room temperature reaction of nido-2 with Co2(CO)8 produced one 19-vertex fused metallaheteroborane cluster [(Cp*Rh)2B6H4S4{Co(CO)}2{Co(CO)2}2(µ-CO)S{Co(CO)3}2], 8. Cluster 8 contains one nido-decaborane {Rh2B6S2}, one butterfly {Co2S2} and one bicapped square pyramidal {Co6S} unit that exhibits an intercluster fusion with two sulfur atoms in common. Clusters 3-6 have been characterized by multinuclear NMR and IR spectroscopy, mass spectrometry and structurally determined by XRD analyses. Furthermore, the DFT calculations have been carried out to gain insight into electronic, structural and bonding patterns of the synthesized clusters.

3.
Inorg Chem ; 61(42): 16750-16759, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36228081

ABSTRACT

In an effort to synthesize cobalt-rich metallaheteroboranes from decaborane(14) analogues, we have studied the reaction of 10-vertex nido-[(Cp*Co)2B6H6E2] (Cp* = η5-C5Me5, 1: E = Se and 2: E = Te) with [Co2(CO)8] under thermolytic conditions. All of these reactions yielded face-fused clusters, [(Cp*Co)2B6H6E2{Co(CO)}(µ-CO){Co3(CO)6}] (3: E = Se and 4: E = Te). Further, when clusters 3 and 4 were treated with [Co2(CO)8], they underwent further cluster buildup reactions leading to the formation of 16-vertex doubly face-fused clusters [(Cp*Co)2B6H6E2{Co2(CO)2}(µ-CO)2{Co4(CO)8}] (5: E = Se and 6: E = Te). Cobaltaheteroboranes 3 and 4 comprise one icosahedron {Co4B6E2} and one square pyramidal {Co3B2} moiety, whereas 5 and 6 are made with one icosahedron {Co4B6E2} and two square pyramidal {Co3B2} cores. In an attempt to generate heterometallic metal-rich clusters, we have explored the reactivity of decaborane(14) analogue nido-[(Cp*Co)2B7TeH9] (7) with [Ru3(CO)12] at 80 °C, which afforded face-fused 13-vertex cluster [(Cp*Co)2B7H7Te{Ru3(CO)8}] (8). Cluster 8 is a rare example of a metal-rich metallaheteroborane in which one icosahedron {Co2Ru2B7Te} and a tetrahedron {Ru2B2} units are fused through a common {RuB2} triangular face. Further, the treatment of nido-[(Cp*Co)2B6S2H4(CH2S2)] (9) with [Fe2(CO)9] afforded 11-vertex nido-[(Cp*Co)2B6S2H4(CH2S2){Fe(CO)3}] (10). The core structure of 10 is similar to that of [C2B9H11]2- with a five-membered pentahapto coordinating face. All of the synthesized metal-rich metallaheteroboranes have been characterized by multinuclear nuclear magnetic resonance (NMR) spectroscopy, IR spectroscopy, ESI-MS, and structurally solved by single-crystal X-ray diffraction analysis. Furthermore, theoretical investigations gave insight into the bonding of such higher-nuclearity clusters containing heavier chalcogen atoms.

4.
Inorg Chem ; 60(16): 12367-12376, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34319710

ABSTRACT

To establish a procedure for single-cage cluster expansion of open cage dimetallaoctaboranes(12), we have investigated the chemistry of nido-[(Cp*M)2B6H10] (η5-C5Me5 = Cp*, 1: M = Co; 2: M = Rh), with diverse chalcogen-based borate ligands. As a result, treatment of nido-1 and nido-2 with Li[BH2E3] (E = S, Se, or Te) yielded 10-vertex nido-[(Cp*Co)2B7EH9] (3: E = S; 4: E = Se; 5: E = Te) along with known 10-vertex nido-[(Cp*M)2B6H6E2] (6: E = S, M = Co; 7: E = Se, M = Co; 8: E = Te, M = Co; 9: E = Se, M = Rh). The geometries of dimetallachalcogenaboranes, 3-9, are isostructural with decaborane(14). Thermolysis of nido-1 and nido-2 with an intermediate, generated from CS2 and [LiBH4]·THF reaction in THF, produced nido-[(Cp*M)2B6S2H4(CH2S2)] (10: M = Co; 11: M = Rh) and nido-[(Cp*M)2B6S2H4(CS3)] (12: M = Co; 13: M= Rh). Clusters 10-13 are rare species in which one of the B-B bonds is coordinated with a {CS2}2- or {CS3}2- ligand, generating di(thioborolane) {B2S2CH2} or di(thioboralane)-thione {B2CS3} moieties. To examine further the coordination chemistry of CS2-bridged decaborane(14) analogue nido-10, photolysis was carried out with {M(CO)5·THF} (M = Mo or W) that led to the isolation of [(Cp*Co)2B6S2H4(CH2S2){M(CO)5}] (14: M = Mo; 15: M = W), where the {CH2S2} moiety is coordinated with one {M(CO)5} moiety in η1-fashion. All the synthesized clusters have been characterized by ESI-mass, multinuclear NMR spectroscopy, and IR spectroscopy and structurally solved by single-crystal XRD. Furthermore, DFT calculations probe the bonding of these CS2- and CS3-bridged decaborane analogues.

5.
J Lab Physicians ; 13(1): 50-57, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34054238

ABSTRACT

Context Epithelial ovarian carcinomas are one of the most common lethal gynecological malignancies. There is no specific symptom or biomarker for detection of this malignancy in early stage. So, the advanced stage, nature of frequent recurrences, and resistance to chemotherapies make it very difficult to deliver proper treatment to patients. Efforts are on to identify the presence of cancer stem cell by using a specific biomarker in epithelial ovarian cancer in the early stage. Objectives This study aims to identify the CD44 positive cancer cells in epithelial ovarian carcinoma of different histopathological types. It also intends to correlate the expression of CD44 with the expression of p53 and Ki67. Materials and Methods Sections from diagnosed specimens of ovarian epithelial neoplasm had been fixed in 10% formalin and embedded in paraffin, and they were used for immunohistochemical (IHC) staining for CD44, p53, and Ki67, using a peroxidase kit with mouse monoclonal antibodies. Then, the slides were evaluated for both tumor cell percentage and intensity of immunoreactivity. Statistical Analysis Chi-square had been used to find the significance of study. Significance level was considered at p value < 0.05 Results In this study, 40 patients were included in a period of one and a half years. The present study suggested that the levels of CD44 expression were increased in epithelial ovarian cancer compared to borderline tumor. CD44 was positively correlated with the ki67 expression and tumor grade. High-grade serous, mucinous, and endometrioid tumors were associated with high CD44 expression. Positivity of CD44 was found significantly higher in case of positive status of p53 (z = 3.65; p < 0.0001). Conclusion We can correlate CD44 positive cancer stem cells with grade of ovarian carcinomas, but for prognostic significance and therapeutic applications, more corroborative and multicentric works in this field are needed. CD44 can be targeted for therapy in recurrent and resistant cases of ovarian cancer.

6.
Inorg Chem ; 59(6): 3537-3541, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32125834

ABSTRACT

The reactions of dimetallaoctaboranes(12) [(Cp*M)2B6H10] [M = Co (1) or Rh (2); Cp* = η5-C5Me5] with different chalcogen sources, such as Li[BH2E3] and Li[BH3EPh] (E = S, Se, or Te), led to two unique reaction outcomes. For example, the formation of 10-vertex nido-[(Cp*M)2B6E2H6] (3, M = Co, E = S; 4, M = Co, E = Se; 5, M = Co, E = Te; 6, M = Rh, E = Se) from compounds 1 and 2 is a typical representation of a cluster growth reaction, while the formation of arachno-[(Cp*Co)2B6H9(EPh)] [E = S (9), Se (10), or Te (11)] is a rare method that yielded arachno clusters, keeping the core geometry identical. The formation of arachno-9-11 is a unique method that converts disobedient cluster 1 to obedient clusters 9-11. Further, the reactivity of nido-4 with various metal carbonyls presented sequential cluster growth reactions, which afforded 11-vertex nido-[(Cp*Co)2B6Se2H6{Fe(CO)3}] (7) and 13-vertex fused closo-[(Cp*Co)2B6Se2H6{Ru3(CO)8}] (8). The core geometry of nido-7 is uncommon and very similar to that of [C2B9H11]2- with a unique open pentahapto-coordinating five-membered face.

SELECTION OF CITATIONS
SEARCH DETAIL
...