Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958310

ABSTRACT

BACKGROUND: Cancer cases are continuously increasing, while the prevalence rates of physical inactivity are also continuously increasing. Physical inactivity is a causative factor in non-communicable diseases, including cancer. However, the potential beneficial effects of exercise on cancer treatment have not received much attention so far. The aim of this study was to highlight the relationship between cancer and exercise on a molecular basis. METHODS: Comprehensive and in-depth research was conducted in the most accurate scientific databases by using relevant and effective keywords. RESULTS: The mechanisms by which exercise may reduce cancer risk and/or progression may include the metabolic profile of hormones, systemic inflammation reduction, insulin sensitivity increase, antioxidant capacity augmentation, the boost to the immune system, and the direct effect on the tumor. There is currently substantial evidence that the effect of exercise may predict a stronger association with cancer and could supplementarily be embedded in cancer clinical practice to improve disease progression and prognosis. CONCLUSION: The field of this study requires interconnecting the overall knowledge of exercise physiology with cancer biology and cancer clinical oncology to provide the basis for personalized targeting strategies that can be merged with training as a component of a holistic co-treatment approach to optimize cancer healthcare.

2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762572

ABSTRACT

Cancer rates are increasing, and cancer is one of the main causes of death worldwide. Amygdalin, also known as vitamin B17 (and laetrile, a synthetic compound), is a cyanogenic glycoside compound that is mainly found in the kernels and pulps of fruits. This compound has been proposed for decades as a promising naturally occurring substance which may provide anticancer effects. This is a comprehensive review which critically summarizes and scrutinizes the available studies exploring the anticancer effect of amygdalin, highlighting its potential anticancer molecular mechanisms as well as the need for a nontoxic formulation of this substance. In-depth research was performed using the most accurate scientific databases, e.g., PubMed, Cochrane, Embase, Medline, Scopus, and Web of Science, applying effective, characteristic, and relevant keywords. There are several pieces of evidence to support the idea that amygdalin can exert anticancer effects against lung, breast, prostate, colorectal, cervical, and gastrointestinal cancers. Amygdalin has been reported to induce apoptosis of cancer cells, inhibiting cancer cells' proliferation and slowing down tumor metastatic spread. However, only a few studies have been performed in in vivo animal models, while clinical studies remain even more scarce. The current evidence cannot support a recommendation of the use of nutritional supplements with amygdalin due to its cyano-moiety which exerts adverse side effects. Preliminary data have shown that the use of nanoparticles may be a promising alternative to enhance the anticancer effects of amygdalin while simultaneously reducing its adverse side effects. Amygdalin seems to be a promising naturally occurring agent against cancer disease development and progression. However, there is a strong demand for in vivo animal studies as well as human clinical studies to explore the potential prevention and/or treatment efficiency of amygdalin against cancer. Moreover, amygdalin could be used as a lead compound by effectively applying recent developments in drug discovery processes.

SELECTION OF CITATIONS
SEARCH DETAIL