Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Chromatogr A ; 1717: 464668, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38278132

ABSTRACT

An efficient magneto-adsorbent composed of polyaniline blend poly(amidoamine) dendrimers modified graphene oxide quantum dots and magnetic Fe3O4 particles (Fe3O4@PANI-PSS/PAMAM-QGO) for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water was synthesized. Fe3O4@PANI-PSS/PAMAM-QGO exhibited exceptional adsorption property for most PAHs analytes. The nanocomposite sorbent demonstrated a ferromagnetic behavior of 17.457 emu g-1, which is adequate for subsequent use in MSPE. Key parameters affecting the processes of adsorption and desorption, including the sorbent amount, vortex adsorption time, vortex extraction time, sample volume, a solvent for desorption and the solvent volume were all examined and optimized. The performance of MSPE using Fe3O4@PANI-PSS/PAMAM-QGO as adsorbent for four PAHs, including fluoranthene, acenaphthene, phenanthrene and pyrene were studied through high performance liquid chromatography equipped with spectrofluorometer. Under the optimal conditions, Fe3O4@PANI-PSS/PAMAM-QGO showed a wide linearity of 10-1,000 ng mL-1, low detection limit (LOD) ranging from 1.92 to 4.25 ng mL -1 and high accuracy (recoveries of 93.6-96.5 %). Enrichment factors up to 185 were achieved. Furthermore, Fe3O4@PANI-PSS/PAMAM-QGO exhibited good recyclability (10 times, RSDs ≤ 5.35%), while maintaining its high efficiency in the extraction of PAHs. The proposed method was successfully applied for environmental samples. Recoveries ranging from 81.2 to 106.2 % were obtained, indicating a low matrix effect and the robustness of the optimized MSPE method. Based on these features and under the optimal extraction conditions, Fe3O4@PANI-PSS/PAMAM-QGO was demonstrated to be a successful tool for the rapid and sensitive extraction of PAHs in the samples.


Subject(s)
Aniline Compounds , Dendrimers , Graphite , Polyamines , Polycyclic Aromatic Hydrocarbons , Quantum Dots , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Water , Adsorption , Quantum Dots/analysis , Solvents/analysis , Magnetic Phenomena , Solid Phase Extraction/methods , Limit of Detection , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL