Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 11: 1380920, 2024.
Article in English | MEDLINE | ID: mdl-38948668

ABSTRACT

Synthesis and secretion of bile acids (BA) is a key physiological function of the liver. In pathological conditions like portosystemic shunt, hepatic insufficiency, hepatitis, or cirrhosis BA metabolism and secretion are disturbed. Quantification of total serum BA is an established diagnostic method to assess the general liver function and allows early detection of abnormalities, liver disease progression and guidance of treatment decisions. To date, data on comparative BA profiles in dogs are limited. However, BA profiles might be even better diagnostic parameters than total BA concentrations. On this background, the present study analyzed and compared individual BA profiles in serum, plasma, urine, and feces of 10 healthy pups and 40 adult healthy dogs using ultra-high performance liquid chromatography coupled to electrospray ionization mass spectrometry. Sample preparation was performed by solid-phase extraction for serum, plasma, and urine samples or by protein precipitation with methanol for the feces samples. For each dog, 22 different BA, including unconjugated BA and their glycine and taurine conjugates, were analyzed. In general, there was a great interindividual variation for the concentrations of single BA, mostly exemplified by the fact that cholic acid (CA) was by far the most prominent BA in blood and urine samples of some of the dogs (adults and pups), while in others, CA was under the detection limit. There were no significant age-related differences in the BA profiles, but pups showed generally lower absolute BA concentrations in serum, plasma, and urine. Taurine-conjugated BA were predominant in the serum and plasma of both pups (68%) and adults (74-75%), while unconjugated BA were predominant in the urine and feces of pups (64 and 95%, respectively) and adults (68 and 99%, respectively). The primary BA chenodeoxycholic acid and taurocholic acid and the secondary BA deoxycholic acid and lithocholic acid were the most robust analytes for potential diagnostic purpose. In conclusion, this study reports simultaneous BA profiling in dog serum, plasma, urine, and feces and provides valuable diagnostic data for subsequent clinical studies in dogs with different kinds of liver diseases.

2.
Anatol J Cardiol ; 27(12): 697-705, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37888784

ABSTRACT

BACKGROUND: Some patients undergoing catheter ablation for atrial fibrillation may develop typical atrial flutter on follow-up, and a second procedure for typical atrial flutter is often required in such patients. In this study, we aimed to define the variables associated with the development of typical atrial flutter after ablation. METHODS: One hundred fifty-nine patients who underwent catheter ablation for the first time due to atrial fibrillation and who did not have a previously documented atrial flutter were included in the study. Before ablation, baseline clinical features and echocardiographic parameters were recorded. At the 1st, 3rd, 6th, and 12th months after the procedure, and then annually, the patients were followed up for typical atrial flutter development. RESULTS: At a mean follow-up of 34.0 (14.0-50.0) months, typical atrial flutter developed in 21 (13.2%) patients. During the follow-up, right atrial diameter was greater in those who developed typical atrial flutter than those who did not [39.0 (38.0-43.0) vs. 36.0 (34.0-39.0) mm, P <.001]. A multiple Cox regression analysis showed that the right atrial diameter was the only independent predictor of typical atrial flutter development (hazard ratio = 1.12, 95% CI: 1.02-1.23, P =.021). A receiver operating characteristic analysis showed that the best cutoff for the right atrial diameter was 38.5 mm to predict typical atrial flutter development (area under the curve = 0.77, 95% CI: 0.67-0.86, sensitivity = 62%, specificity = 75%, P <.001). CONCLUSION: In patients undergoing catheter ablation for atrial fibrillation, a pre-procedural right atrial diameter measurement may predict typical atrial flutter development at follow-up. In particular, patients with a pre-procedural right atrial diameter ≥39 mm may be at a higher risk for developing typical atrial flutter in the future.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Atrial Flutter , Catheter Ablation , Humans , Atrial Fibrillation/surgery , Atrial Flutter/surgery , Heart Atria , Atrial Appendage/surgery , Catheter Ablation/adverse effects , Treatment Outcome
3.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373074

ABSTRACT

The sodium-dependent organic anion transporter (SOAT, gene symbol SLC10A6) specifically transports 3'- and 17'-monosulfated steroid hormones, such as estrone sulfate and dehydroepiandrosterone sulfate, into specific target cells. These biologically inactive sulfo-conjugated steroids occur in high concentrations in the blood circulation and serve as precursors for the intracrine formation of active estrogens and androgens that contribute to the overall regulation of steroids in many peripheral tissues. Although SOAT expression has been detected in several hormone-responsive peripheral tissues, its quantitative contribution to steroid sulfate uptake in different organs is still not completely clear. Given this fact, the present review provides a comprehensive overview of the current knowledge about the SOAT by summarizing all experimental findings obtained since its first cloning in 2004 and by processing SOAT/SLC10A6-related data from genome-wide protein and mRNA expression databases. In conclusion, despite a significantly increased understanding of the function and physiological significance of the SOAT over the past 20 years, further studies are needed to finally establish it as a potential drug target for endocrine-based therapy of steroid-responsive diseases such as hormone-dependent breast cancer.


Subject(s)
Organic Anion Transporters , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Biological Transport , Sodium/metabolism
4.
Front Mol Biosci ; 9: 863912, 2022.
Article in English | MEDLINE | ID: mdl-35573729

ABSTRACT

In addition to the endocrine and paracrine systems, peripheral tissues such as gonads, skin, and adipose tissue are involved in the intracrine mechanisms responsible for the formation of sex steroids via the transformation of dehydroepiandrosterone and dehydroepiandrosterone sulfate (DHEA/DHEAS) into potent androgenic and estrogenic hormones. Numerous studies have examined the relationship between overweight, central obesity, and plasma levels of DHEA and DHEAS. The sodium-dependent organic anion transporter Soat (Slc10a6) is a plasma membrane uptake transporter for sulfated steroids. Significantly increased expression of Slc10a6 mRNA has been previously described in organs and tissues of lipopolysaccharide (LPS)-treated mice, including white adipose tissue. These findings suggest that Soat plays a role in the supply of steroids in peripheral target tissues. The present study aimed to investigate the expression of Soat in adipocytes and its role in adipogenesis. Soat expression was analyzed in mouse white intra-abdominal (WAT), subcutaneous (SAT), and brown (BAT) adipose tissue samples and in murine 3T3-L1 adipocytes. In addition, adipose tissue mass and size of the adipocytes were analyzed in wild-type and Slc10a6 -/- knockout mice. Soat expression was detected in mouse WAT, SAT, and BAT using immunofluorescence. The expression of Slc10a6 mRNA was significantly higher in 3T3-L1 adipocytes than that of preadipocytes and was significantly upregulated by exposure to lipopolysaccharide (LPS). Slc10a6 mRNA levels were also upregulated in the adipose tissue of LPS-treated mice. In Slc10a6 -/- knockout mice, adipocytes increased in size in the WAT and SAT of female mice and in the BAT of male mice, suggesting adipocyte hypertrophy. The serum levels of adiponectin, resistin, and leptin were comparable in wild-type and Slc10a6 -/- knockout mice. The treatment of 3T3-L1 adipocytes with DHEA significantly reduced lipid accumulation, while DHEAS did not have a significant effect. However, following LPS-induced Soat upregulation, DHEAS also significantly inhibited lipid accumulation in adipocytes. In conclusion, Soat-mediated import of DHEAS and other sulfated steroids could contribute to the complex pathways of sex steroid intracrinology in adipose tissues. Although in cell cultures the Soat-mediated uptake of DHEAS appears to reduce lipid accumulation, in Slc10a6 -/- knockout mice, the Soat deletion induced adipocyte hyperplasia through hitherto unknown mechanisms.

5.
J Vet Pharmacol Ther ; 45(3): 265-272, 2022 May.
Article in English | MEDLINE | ID: mdl-35277861

ABSTRACT

P-glycoprotein (P-gp) is the gene product of the multidrug resistance gene (MDR1, syn. ABCB1) that normally restricts the transfer of cortisol across the blood-brain barrier. In the absence of P-gp, cortisol access to the hypothalamus is increased and, by feedback inhibition, this finally leads to lower endogenous plasma cortisol levels in dogs with homozygous nt230(del4) MDR1 mutation (MDR1-/- mutant dogs). While a previous study only focused on plasma cortisol levels, the present study used urinary steroid hormone metabolites to analyze cortisol metabolism in MDR1-/- mutant dogs. Morning void urine was collected from 23 MDR1-/- mutant and 16 MDR1+/+ normal dogs and was subjected to targeted GC-MS steroid hormone metabolome analysis. Seven cortisol metabolites, cortisol itself, and 13 other steroid metabolites were detected. In general, all cortisol metabolites were lower in the urine of the MDR1-/- mutant dogs, with allo-tetrahydro-cortisol and ß-cortol reaching the level of significance. In addition, 11-keto-pregnanetriol levels were significantly lower in the urine of the MDR1-/- mutant dogs, indicating that also the 17alpha-OH-progesterone-derived metabolism was altered. In conclusion, the present study provides the first steroid hormone metabolome analysis in the urine of MDR1-/- mutant dogs. Significant differences in the steroid metabolome of MDR1-/- mutant dogs point to a significant role of P-gp for cortisol metabolism and excretion and so indirectly also for hypothalamic-pituitary-adrenal axis regulation in dogs.


Subject(s)
Hydrocortisone , Hypothalamo-Hypophyseal System , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Dogs , Gas Chromatography-Mass Spectrometry/veterinary , Metabolome , Pituitary-Adrenal System , Steroids
6.
Front Mol Biosci ; 8: 741946, 2021.
Article in English | MEDLINE | ID: mdl-34671644

ABSTRACT

The solute carrier family 10 member SLC10A7 is a negative regulator of intracellular calcium signaling (RCAS). In cell culture, SLC10A7 expression is negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. SLC10A7-deficient cells have significantly increased calcium influx after treatment with thapsigargin for depletion of ER calcium stores, whereas SLC10A7/RCAS overexpression limits calcium influx. Genetic variants in the human SLC10A7 gene are associated with skeletal dysplasia and amelogenesis imperfecta and reveal loss of function on cellular calcium influx. More recently, an additional disease-related genetic variant (P303L) as well as some novel genetic variants (V235F, T221M, I136M, L210F, P285L, and G146S) have been identified. In the present study, these variants were expressed in HEK293 cells to study their subcellular localization and their effect on cellular calcium influx. All variants were properly sorted to the ER compartment and closely co-localized with the STIM protein, a functional component of SOCE. The variants P303L and L210F showed significantly reduced effects on cellular calcium influx compared to the wild type but still maintained some degree of residual activity. This might explain the milder phenotype of patients bearing the P303L variant and might indicate disease potential for the newly identified L210F variant. In contrast, all other variants behaved like the wild type. In conclusion, the occurrence of variants in the SLC10A7 gene should be considered in patients with skeletal dysplasia and amelogenesis imperfecta. In addition to the already established variants, the present study identifies another potential disease-related SLC10A7/RCAS variant, namely, L210F, which seems to be most frequent in South Asian populations.

7.
Front Vet Sci ; 8: 663175, 2021.
Article in English | MEDLINE | ID: mdl-33969041

ABSTRACT

Cytochrome P450 (CYP) drug metabolizing enzymes play an important role in efficient drug metabolism and elimination. Many CYPs are polymorphic and, thereby, drug metabolism can vary between individuals. In the case of canine CYP2C41, gene polymorphism was identified. However, as the first available canine genome sequences all were CYP2C41 negative, this polymorphism could not be clarified at the genomic level. The present study provides an exact characterization of the CYP2C41 gene deletion polymorphism at the genomic level and presents a PCR-based genotyping method that was used for CYP2C41 genotyping of 1,089 individual subjects from 36 different dog breeds. None of the Bearded Collie, Bernese Mountain, Boxer, Briard, French Bulldog or Irish Wolfhound subjects had the CYP2C41 gene in their genomes. In contrast, in the Chinese Char-Pei, Siberian Husky, Schapendoes and Kangal breeds, the CYP2C41 allele frequency was very high, with values of 67, 57, 43, and 34%, respectively. Interestingly, the site of gene deletion was identical for all CYP2C41 negative dogs, and all CYP2C41 positive dogs showed highly homologous sequence domains upstream and downstream from the CYP2C41 gene. CYP2C41 genotyping can now be routinely used in future pharmacokinetic studies in canines, in order to identify genetically-based poor or extensive drug metabolizers. This, together with more extensive in vitro drug screening for CYP2C41 substrates will help to determine the clinical relevance of CYP2C41, and to optimize drug treatment. Although the relative abundance of the CYP2C41 protein in the canine liver seems to not be very high, this CYP could substantially contribute to hepatic drug metabolism in dogs expressing CYP2C41 from both alleles and, when CYP2C41 shows higher catalytic activity to a given drug than other hepatic metabolic enzymes.

8.
Sci Rep ; 10(1): 7248, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350310

ABSTRACT

SLC10A7 represents an orphan member of the Solute Carrier Family SLC10. Recently, mutations in the human SLC10A7 gene were associated with skeletal dysplasia, amelogenesis imperfecta, and decreased bone mineral density. However, the exact molecular function of SLC10A7 and the mechanisms underlying these pathologies are still unknown. For this reason, the role of SLC10A7 on intracellular calcium signaling was investigated. SLC10A7 protein expression was negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. Whereas SLC10A7 knockout HAP1 cells showed significantly increased calcium influx after thapsigargin, ionomycin and ATP/carbachol treatment, SLC10A7 overexpression reduced this calcium influx. Intracellular Ca2+ levels were higher in the SLC10A7 knockout cells and lower in the SLC10A7-overexpressing cells. The SLC10A7 protein co-localized with STIM1, Orai1, and SERCA2. Most of the previously described human SLC10A7 mutations had no effect on the calcium influx and thus were confirmed to be functionally inactive. In the present study, SLC10A7 was established as a novel negative regulator of intracellular calcium signaling that most likely acts via STIM1, Orai1 and/or SERCA2 inhibition. Based on this, SLC10A7 is suggested to be named as negative regulator of intracellular calcium signaling (in short: RCAS).


Subject(s)
Calcium Signaling , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Amino Acid Sequence , Calcium/metabolism , Cell Line , Humans , Mutation , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Organic Anion Transporters, Sodium-Dependent/chemistry , Organic Anion Transporters, Sodium-Dependent/genetics , RNA, Messenger/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Stromal Interaction Molecule 1/metabolism , Symporters/chemistry , Symporters/genetics
9.
Front Pharmacol ; 9: 941, 2018.
Article in English | MEDLINE | ID: mdl-30186172

ABSTRACT

Estrogens play a pivotal role in the development and proliferation of hormone-dependent breast cancer. Apart from free estrogens, which can directly activate the estrogen receptor (ER) of tumor cells, sulfo-conjugated steroids, which maintain high plasma concentrations even after menopause, first have to be imported into tumor cells by carrier-mediated uptake and then can be cleaved by the steroid sulfatase to finally activate ERs and cell proliferation. In the present study, expression of the sodium-dependent organic anion transporter SOAT was analyzed in breast cancer and its role for hormone-dependent proliferation of T47D breast cancer cells was elucidated. The SOAT protein was localized to the ductal epithelium of the mammary gland by immunohistochemistry. SOAT showed high expression in different pathologies of the breast with a clear ductal localization, including ductal hyperplasia, intraductal papilloma, and intraductal carcinoma. In a larger breast cancer cDNA array, SOAT mRNA expression was high in almost all adenocarcinoma specimen, but expression did not correlate with either the ER, progesterone receptor, or human epidermal growth factor receptor 2 status. Furthermore, SOAT expression did not correlate with tumor stage or grade, indicating widespread SOAT expression in breast cancer. To analyze the role of SOAT for breast cancer cell proliferation, T47D cells were stably transfected with SOAT and incubated under increasing concentrations of estrone-3-sulfate (E1S) and estradiol at physiologically relevant concentrations. Cell proliferation was significantly increased by 10-9 M estradiol as well as by E1S with EC50 of 2.2 nM. In contrast, T47D control cells showed 10-fold lower sensitivity to E1S stimulation with EC50 of 21.7 nM. The E1S-stimulated proliferation of SOAT-T47D cells was blocked by the SOAT inhibitor 4-sulfooxymethylpyrene. IN CONCLUSION: The present study clearly demonstrates expression of SOAT in breast cancer tissue with ductal localization. SOAT inhibition can block the E1S-stimulated proliferation of T47D breast cancer cells, demonstrating that SOAT is an interesting novel drug target from the group of E1S uptake carriers for anti-proliferative breast cancer therapy.

10.
Acta Odontol Scand ; 76(2): 130-134, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29057714

ABSTRACT

BACKGROUND: Radiotherapy is a commonly used treatment modality in head and neck cancer; however, it also negatively affects healthy structures. Direct damage to oral soft and hard tissue frequently occurs with radiotherapy. In this study, we aimed to evaluate the effect of radiotherapy on bone surrounding titanium dental implants via biomechanical and molecular methods. MATERIALS AND METHODS: Fifty-four implants were inserted in the left tibiae of 18 adult male New Zealand rabbits (3 implants in each rabbit). After 4 weeks of the implant surgery, the left tibiae of 12 rabbits were subjected to a single dose of irradiation (15 Gy or 30 Gy). Four weeks after the irradiation, rabbits were sacrificed and removal torque test was done for the biomechanical evaluation. Bone morphogenetic protein-2 (Bmp-2) and fibroblast growth factor-2 (Fgf-2) expression analyses were performed with Real-time PCR. Statistical analysis was done using SPSS. RESULTS: The control group showed significantly higher removal torque value than the 15 and 30 Gy irradiation groups, and the 15 Gy irradiation group had higher removal torque value than the 30 Gy irradiation group (p < .001). The 15 Gy and 30 Gy irradiation groups had significantly lower Bmp-2 and Fgf-2 mRNA expressions than the control group (p < .001). In addition, the 30 Gy irradiation group had significantly lower Bmp-2 (p < .01) and Fgf-2 mRNA expressions (p < .001) than the 15 Gy group. CONCLUSION: Radiotherapy with 15 and 30 Gy doses can adversely affect osseointegration of implants by reducing the quality of bone and impairing the bone-to-implant contact. The mechanism of action seems to be related to alterations in Bmp-2 and Fgf-2 mRNA expressions.


Subject(s)
Bone Morphogenetic Protein 2/radiation effects , Dental Implants , Dental Materials/radiation effects , Titanium/chemistry , Animals , Dental Materials/chemistry , Dose-Response Relationship, Radiation , Male , Osseointegration/radiation effects , Rabbits , Surface Properties , Torque
11.
Int Immunopharmacol ; 43: 227-235, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28043031

ABSTRACT

BACKGROUND AND AIM: Hepatocellular cancer (HCC) is the sixth most common cancer and liver fibrosis is strongly associated with HCC. Treatment options are limited, and preventive strategies should be developed. An important step in the beginning of liver fibrosis is a strong inflammatory response. 5-HT7 is the last recognized member of the serotonin receptor family and is expressed in both central nerve system and peripheral system and have a lot of functions like learning, memory, smooth muscular relaxation, in the control of circadian rhythms and thermoregulation, pain and migraine, schizophrenia, anxiety, cognitive disturbances, and even inflammation. METHODS: We therefore examined the biochemical, histopathological and molecular effects of the 5-HT7 receptor agonist and antagonist on inflammatory liver fibrogenesis in animal models of progressive cirrhosis: a mouse model induced by carbon tetrachloride (CCl4) and in Hep3b cells. RESULTS: 5-HT7 expression was observed in the liver in vivo and in vitro in CCl4-induced damage. 5-HT7 receptor agonist but not the antagonist reduced liver markers in mice and in Hep3b cells in carbon tetrachloride (CCl4) induced damage. 5-HT7 agonist, but not antagonist, protected liver tissue from oxidative stress in fibrosis. 5-HT7 agonist but not antagonist induces anti-inflammatory, anti-fibrinotic and anti-cytokine features in liver fibrosis in vivo and in vitro. CONCLUSIONS: 5-HT7 receptors have modulatory function and are an up-and-coming pharmacological target in the inflammatory fibrotic process. 5-HT7 receptor agonist LP-44 showed significant hepatoprotective effects against liver fibrosis, and LP-44 might become a useful therapeutic target for chronic liver inflammation and fibrosis.


Subject(s)
Carcinoma, Hepatocellular/immunology , Inflammation , Liver Neoplasms/immunology , Liver/metabolism , Lung Injury/immunology , Receptors, Serotonin/metabolism , Animals , Carbon Tetrachloride , Carcinoma, Hepatocellular/drug therapy , Cell Line , Fibrosis , Humans , Liver/drug effects , Liver/pathology , Liver Neoplasms/drug therapy , Male , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Phenols/pharmacology , Receptors, Serotonin/genetics , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Sulfonamides/pharmacology
12.
Biochem Genet ; 55(1): 34-47, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27586707

ABSTRACT

This study aimed to investigate the effects of the 5-HT7 receptor agonist (LP44) and antagonist (SB269970) on LPS-induced in vivo tissue damage and cell culture by molecular methods. This study was conducted in two steps. For in vivo studies, 24 female rats were divided into four groups. Group I: healthy; II (2nd h): LPS 5 mg/kg administered intraperitoneally (i.p.); III (4th h): LPS 5 mg/kg administered i.p.; IV (8th h): LPS 5 mg/kg administered i.p. For in vitro studies, we used the A549 cell line. Groups: I control (healthy) (2-4 h); II LPS: 1 µg/ml E. Coli O55:B5 strain (2-4 h); III agonist (LP44) 10-9 M (2-4 h); IV antagonist (SB269970) 10-9 M (2-4 h); V LPS+agonist 10-9 M (LP44 1 µg/ml) (2-4 h); VI LPS+antagonist 10-9 M (2-4 h). In molecular analyses, we determined increased TNF-α, IL-1ß, NF-κB, and 5-HT7 mRNA expressions in rat lung tissues and increased TNF-α, iNOS, and 5-HT7 mRNA expressions in the A549 cell line. In in vitro parameters, LP44 agonist administration-related decrease was observed. Our study showed that lung 5-HT7 receptor expression is increased in LPS-induced endotoxemia. All this data suggest that 5-HT7 receptor overexpression is an important protective mechanism during LPS-induced sepsis-related cell damage.


Subject(s)
Lung Injury , Receptors, Serotonin/metabolism , A549 Cells , Animals , Cell Survival/drug effects , Female , Gene Expression/drug effects , Inflammation/chemically induced , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Male , Protein Transport/drug effects , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
13.
Iran J Immunol ; 13(3): 220-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27671513

ABSTRACT

BACKGROUND: Probiotics are "live", beneficial microbes that provide important health benefits in their hosts. There is significant interest in the modulation and regulation of the immune function by probiotics. OBJECTIVE: To investigate the immunomodulatory effects of a probiotic mixture, including Lactobacillus and Bifidobacterium species, by detecting serum cytokine and immunoglobulin levels. METHODS: The rats were randomly divided into 4 groups. The first group was "Control group" and other 3 groups were probiotic application groups who received different doses of probiotics. The probiotic mixture included 12 probiotic bacteria, mostly Lactobacillus and Bifidobacterium strains. Probiotic mixture was administered to rats for 12 consecutive days. TNF-α, TGF-ß, IL-1-ß, IL-6, and IL-10 levels as well as serum IgG and IgA concentrations were detected in the sera after 12 days. RESULTS: Probiotics led to a decrease in the levels of TNF-α, IL-6 and TGF-ß; however, they led to increase in the serum levels of IL-10, IgG and IgA. There were significant differences between control group and probiotic application groups (p<0.05). CONCLUSION: These data suggest that the commensal microbiota are important for stimulating both proinflammatory and regulatory responses in order to rapidly clear infections and minimize inflammation-associated tissue damage.


Subject(s)
Bifidobacterium/immunology , Lactobacillus/immunology , Probiotics/metabolism , Animals , Cytokines/blood , Female , Homeostasis , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunomodulation , Rats , Rats, Wistar
14.
Chem Biol Interact ; 258: 266-75, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27645307

ABSTRACT

PURPOSE: Previously blocking the renin angiotensin system (RAAS) has been effective in the prevention of gastric damage. Therefore, the aim of this study was to investigate the effects of aliskiren, and thus, direct renin blockage, in indomethacin-induced gastric damage model. METHODS: Effects of aliskiren were evaluated in indomethacin-induced gastric damage model on Albino Wistar rats. Effects of famotidine has been investigated as standard antiulcer agent. Stereological analyses for ulcer area determination, biochemical analyses for oxidative status determination and molecular analyses for tissue cytokine and cyclooxygenase determination were performed on stomach tissues. In addition, to clarify antiulcer effect mechanism of aliskiren pylorus ligation-induced gastric acid secretion model was applied on rats. RESULTS: Aliskiren was able to inhibit indomethacin-induced ulcer formation. It also inhibited renin, and thus, decreased over-produced Angiotensin-II during ulcer formation. Aliskiren improved the oxidative status and cytokine profile of the stomach, which was most probably impaired by increased Angiotensin II concentration. Aliskiren also increased gastroprotective prostaglandin E2 concentration. Finally, aliskiren did not change the gastric acidity in pylorus ligation model. CONCLUSION: Aliskiren exerted its protective effects on stomach tissue by decreasing inflammatory cytokines and oxidative stress as a result of inhibiting the RAAS, at a rate-limiting step, as well as its end product, angiotensin II. Aliskiren also significantly increased protective factors such as PGE2, but not affect aggressive factors such as gastric acidity.


Subject(s)
Amides/pharmacology , Amides/therapeutic use , Fumarates/pharmacology , Fumarates/therapeutic use , Renin-Angiotensin System/drug effects , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Animals , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Dinoprostone/metabolism , Glutathione/metabolism , Hydrogen-Ion Concentration , Indomethacin , Kinetics , Male , Malondialdehyde/metabolism , Models, Biological , Oxidative Stress/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Stomach/drug effects , Stomach/enzymology , Stomach/pathology , Stomach Ulcer/genetics , Superoxide Dismutase/metabolism
15.
Iran J Basic Med Sci ; 19(5): 483-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27403254

ABSTRACT

OBJECTIVES: In the present study, our aim was to investigate the possible protective effects of epigallocatechin gallate (EGCG) on lipopolysaccharide (LPS)-induced hepatotoxicity by using Hep3B human hepatoma cells. Specifically, the study examines the role of some proinflammatory markers and oxidative damage as possible mechanisms of LPS-associated cytotoxicity. Consequently, the hepatocellular carcinoma cell line Hep3B was chosen as a model for investigation of LPS toxicity and the effect of EGCG on LPS-exposed cells. MATERIALS AND METHODS: The Hep3B human hepatoma cells were used for this study. The cytotoxic effects of chemicals (EGCG and LPS), AST and ALT levels, SOD and CAT activities, GSH-Px level and TNF-alpha and IL-6 levels were detected by using different biochemical and molecular methods. LPS and EGCG were applied to cells at various times and doses. RESULTS: The highest treatment dose of EGCG (400 µM) led to a dramatic decrease in SOD level and increase in CAT and GSH levels. Additionally, the highest dose of EGCG also led to a dramatic increase in TNF-alpha and IL-6 levels. On the other hand, effective doses of EGCG (200 and 100 µM) normalized all related parameters levels. CONCLUSION: LPS caused hepatotoxicity, but interestingly, a high dose of EGCG was found to be a cytotoxic agent in this study. However, other two doses of EGCG led to a decrease in both inflammatory cytokine levels and antioxidant enzyme levels. Further studies should examine the effect of EGCG on secondary cellular signaling pathways.

16.
Peptides ; 82: 35-43, 2016 08.
Article in English | MEDLINE | ID: mdl-27208703

ABSTRACT

This study investigated possible role of U-II and its receptor expression in inflammation by using UTR agonist and antagonist in carrageenan induced acute inflammation. Rats were divided into 5 groups as (1) Healthy control, (2) Carrageenan control, (3) Carrageenan +Indomethacin 20mg/kg, orally, (4) Carrageenan +AC7954 (U-II receptor agonist, intraperitoneally) 30mg/kg and (5) Carrageenan +SB657510 (UTR antagonist, intraperitoneally) 30mg/kg. 1h after drug administration, carrageenan was injected. At the 3rd hour after carrageenan injection, agonist produced no effect while antagonist 63% anti-inflammatory effect respectively. UTR and UT-II expression increased in carrageenan induced paw tissue. Antagonist administration prevented the decrease in an antioxidant system and also capable to decrease TNF-α and IL-6 mRNA expressions. This study showed the role of urotensin II receptors in the physiopathogenesis of acute inflammatory response that underlying many diseases accompanied by inflammation.


Subject(s)
Inflammation/drug therapy , Receptors, G-Protein-Coupled/metabolism , Urotensins/metabolism , Animals , Anti-Inflammatory Agents/administration & dosage , Carrageenan/toxicity , Chromans/administration & dosage , Gene Expression Regulation/drug effects , Humans , Indomethacin/administration & dosage , Inflammation/chemically induced , Inflammation/pathology , Interleukin-6/genetics , Rats , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Tumor Necrosis Factor-alpha/genetics , Urotensins/genetics
17.
Gynecol Endocrinol ; 32(8): 675-683, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26939623

ABSTRACT

The aim of this study was to evaluate the effects of aliskiren, direct renin inhibitor, as an antioxidant and tissue protective agent and evaluate the molecular, biochemical, and histopathological changes in experimental ischemia and ischemia/reperfusion injury in rat ovaries. Forty-eight female rats were randomly divided into eight groups: in Group 1, only sham operation was performed. Group 2 received 100 mg/kg aliskiren and sham operated. In Group 3, 3 h-period of bilateral ovarian ischemia was applied. Group 4 received a 3-h period of ischemia followed by 3 h of reperfusion. Groups 5 and 6 received 50 and 100 mg/kg, respectively, of aliskiren and bilateral ovarian ischemia was applied (after a 3-h period of ischemia, both ovaries were surgically removed). To Groups 7 and 8, 50 and 100 mg/kg of aliskiren were administered, respectively, and the induction of ischemia was performed. At the end of a 3-h period of ischemia, bilateral vascular clips were removed, and 3 h of reperfusion continued. After the experiments, IL-1ß, IL-6, TNF-α, and iNOS mRNA expressions and SOD, GSH, MDA, renin, and angiotensin-II levels were determined and histopathological changes were examined in rat ovaries. Aliskiren treatment normalized excessive changes in cytokine and oxidative stress markers in both ischemia and ischemia/reperfusion injury. Histopathologically, treatment with aliskiren ameliorated the development of ischemia and/or ischemia/reperfusion tissue injury. This study concluded that aliskiren treatment is effective in reversing ischemia and/or ischemia/reperfusion induced ovary damage via the improvement of oxidative stress, reduction of inflammation, and suppression of the renin-angiotensin aldosterone system.


Subject(s)
Amides/pharmacology , Fumarates/pharmacology , Ischemia/prevention & control , Ovarian Diseases/prevention & control , Protective Agents/pharmacology , Renin-Angiotensin System/drug effects , Reperfusion Injury/prevention & control , Amides/administration & dosage , Animals , Disease Models, Animal , Female , Fumarates/administration & dosage , Protective Agents/administration & dosage , Random Allocation , Rats , Rats, Wistar
18.
Clin Exp Hypertens ; 38(2): 189-93, 2016.
Article in English | MEDLINE | ID: mdl-26797415

ABSTRACT

In this study, by examining 5-HT7 receptor expression in placentae from pre-eclamptic and normal pregnancies, we aimed to discover a new step of pathophysiological cascade for preeclampsia. Patients whose blood pressure over the 140/90 mmHg were included when study after 20 weeks of gestation. 5-HT7 receptor expression was investigated on the placentae obtained after birth by real time PCR (RT-PCR) analysis. Pre-natal-post-natal, systolic-diastolic blood pressure values, proteinuria and renal function indicators as BUN and creatinine levels of pre-eclamptic pregnant women were higher than the healthy group. Similarly, 5-HT7 receptor expression determined in healthy placentae increased 8-fold in pre-eclamptic women. This study, for the first time we showed 5-HT7 receptor expression in normal placenta and increased expression in pre-eclamptic placenta.


Subject(s)
Placenta/metabolism , Pre-Eclampsia/genetics , RNA, Messenger/metabolism , Receptors, Serotonin/genetics , Adult , Blood Pressure , Blood Urea Nitrogen , Case-Control Studies , Creatinine/metabolism , Female , Gene Expression , Humans , Pre-Eclampsia/metabolism , Pregnancy , Proteinuria/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Serotonin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Serum Albumin/metabolism , Young Adult
19.
Br J Radiol ; 89(1058): 20140724, 2016.
Article in English | MEDLINE | ID: mdl-26562095

ABSTRACT

OBJECTIVE: Contrast media (CM) are a major cause of nephropathy in high-risk patients. The aim of this study was to examine the effects of carnitine (CAR) in advanced nephrotoxicity due to CM administration in rats with glycerol-induced renal functional disorder. METHODS: 40 rats were divided randomly into five groups (n = 8): (1) healthy group; (2) glycerol only (GLY); (3) glycerol and CM (GLY + CM); (4) glycerol, CM and 200 mg kg(-1) carnitine (CAR200, Carnitene(®); Sigma-tau/Santa Farma, Istanbul, Turkey); and (5) glycerol, CM and 400 mg kg(-1) carnitine (CAR400). Kidney injury was induced with a single-dose, intramuscular injection of 10 ml kg(-1) body weight (b.w.) of GLY. CAR was administered intraperitoneally. CM (8 ml kg(-1) b.w. iohexol, Omnipaque™; Opakim Medical Products, Istanbul, Turkey) was infused via the tail vein to the rats in Groups 3-5. RESULTS: l-carnitine administration significantly decreased serum creatinine and blood urea nitrogen levels. Superoxide dismutase and glutathione activity increased significantly in the treatment groups compared with the nephrotoxic groups. CAR400 significantly reduced malondialdehyde levels to healthy levels. In the treatment groups, tumour necrosis factor (TNF)-α, transforming growth factor 1ß, interleukin 1ß and caspase-3 gene expression decreased compared with the nephrotoxic groups. TNF-α and nuclear factor kappa-beta (NF-κB) protein expression increased after CM and CAR administration reduced both TNF-α and NF-κB expressions. Histopathologically, hyaline and haemorrhagic casts and necrosis in proximal tubules increased in the nephrotoxicity groups and decreased in the CAR groups. CONCLUSION: The results reveal that l-carnitine protects the oxidant/antioxidant balance and decreases proinflammatory cytokines and apoptosis in CM-induced nephrotoxicity in rats with underlying pathology. ADVANCES IN KNOWLEDGE: Depending on the underlying kidney pathologies, the incidence of CM-induced nephropathy (CIN) increases. Therefore, this is the best model to represent clinically observed CIN.


Subject(s)
Apoptosis/drug effects , Carnitine/pharmacology , Contrast Media/toxicity , Cytokines/blood , Glycerol/toxicity , Iohexol/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Oxidative Stress/drug effects , Animals , Blood Urea Nitrogen , Creatinine/blood , Immunohistochemistry , Male , Random Allocation , Rats , Rats, Wistar
20.
J Cell Biochem ; 117(3): 638-46, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26280784

ABSTRACT

Paracetamol is one of the most popular and widely used analgesic and antipyretic agents, but an overdose can cause hepatotoxicity and lead to acute liver failure. Aliskiren directly inhibits renin which downregulates the renin-angiotensin-aldosterone system (RAAS). Recent findings suggest that RAAS system takes part in the pathogenesis of liver fibrosis. We aimed to reveal the relationship between hepatotoxicity and the RAAS by examining paracetamol induced hepatotoxicity. Rats were separated into five groups as follows: control, 100 mg/kg aliskiren (p.o.), 2 g/kg paracetamol (per os (p.o.)), 2 g/kg paracetamol + 50mg/kg aliskiren (p.o.), and 2 g/kg paracetamol + 100 mg/kg aliskiren(p.o.). Samples were analyzed at the biochemical, molecular, and histopathological levels. Paracetamol toxicity increased alanine aminotransferases (ALT), aspartate aminotransferases (AST), renin, and angiotensin II levels in the serum samples. In addition, the SOD activity and glutathione (GSH) levels decreased while Lipid Peroxidation (MDA) levels increased in the livers of the rats treated with paracetamol. Paracetamol toxicity caused a significant increase in TNF-α and TGF-ß. Both aliskiren doses showed an improvement in ALT, AST, oxidative parameters, angiotensin II, and inflammatory cytokines. Only renin levels increased in aliskiren treatment groups due to its pharmacological effect. A histopathological examination of the liver showed that aliskiren administration ameliorated the paracetamol-induced liver damage. In immunohistochemical staining, the expression of TNF-α in the cytoplasm of the hepatocytes was increased in the paracetamol group but not in other treatment groups when compared to the control group. In light of these observations, we suggest that the therapeutic administration of aliskiren prevented oxidative stress and cytokine changes and also protected liver tissues during paracetamol toxicity by inhibiting the RAAS.


Subject(s)
Acetaminophen/toxicity , Amides/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Fumarates/pharmacology , Renin-Angiotensin System/drug effects , Alanine Transaminase/blood , Amides/therapeutic use , Angiotensin II/blood , Animals , Antioxidants/metabolism , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/blood , Fumarates/therapeutic use , Liver/drug effects , Liver/metabolism , Male , Oxidants/metabolism , Rats, Wistar , Renin/antagonists & inhibitors , Renin/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...