Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Scand J Med Sci Sports ; 34(5): e14638, 2024 May.
Article in English | MEDLINE | ID: mdl-38671559

ABSTRACT

This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.


Subject(s)
Adaptation, Physiological , Magnetic Resonance Imaging , Muscle, Skeletal , Tendons , Ultrasonography , Humans , Male , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Tendons/physiology , Tendons/diagnostic imaging , Adaptation, Physiological/physiology , Biomechanical Phenomena , Adult , Female , Isometric Contraction/physiology , Elastic Modulus/physiology
2.
J Exp Biol ; 226(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37721047

ABSTRACT

In response to a mechanical stimulus, tendons have a slower tissue renewal rate compared with muscles. This could, over time, lead to a higher mechanical demand (experienced strain) for the tendon, especially when a high strain magnitude exercise is repeated without sufficient recovery. The current study investigated the adaptive responses of the human triceps surae (TS) muscle-tendon unit (MTU) and extracellular matrix turnover-related biomarkers to repetitive high tendon strain cyclic loading. Eleven young adult males performed a progressive resistance exercise over 12 consecutive days, consisting of high Achilles tendon (AT) strain cyclic loading (90% MVC) with one leg once a day (LegT1) and the alternate leg three times a day (LegT3). Exercise-related changes in TS MTU mechanical properties and serum concentrations of extracellular matrix turnover-related biomarkers were analysed over the intervention period. Both legs demonstrated similar increases in maximal AT force (∼10%) over the 12 day period of exercise. A ∼20% increase in maximal AT strain was found for LegT3 (P<0.05) after 8 consecutive exercise days, along with a corresponding decrease in AT stiffness. These effects were maintained even after a 48 h rest period. The AT mechanical properties for LegT1 were unaltered. Biomarker analysis revealed no sign of inflammation but there was altered collagen turnover and a delay in collagen type I synthesis. Accordingly, we suggest that tendon is vulnerable to frequent high magnitude cyclic mechanical loading as accumulation of micro-damage can potentially exceed the rate of biological repair, leading to increased maximal tendon strain.

3.
Biomed Tech (Berl) ; 68(5): 545-552, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37067526

ABSTRACT

Head worn displays have become increasingly popular at workplaces in logistics and assembly lines in recent years. Such displays are expected to improve productivity and safety at the workplace. However, their impact on balance in the workforce is still an open research question. Therefore, we investigated the influence of the Vuzix M400 and Realwear HMT1 smart glasses on postural control. A laboratory study was conducted with eleven participants. Balance parameters were recorded during bilateral quiet stance, together with parameters of cognitive load. The two different smart glasses used in this study were compared with a monitor and a tablet under single-task conditions and while performing a spatial 2-back task. As balance parameters, the prediction ellipse and sample entropy in anteroposterior as well as mediolateral direction of the center-of-pressure data were examined. No significant differences were observed in the cognitive task performance between the devices. The prediction ellipse of the smart glasses was smaller than the tablets but larger than the smartboard. The dynamic of sample entropy data suggests that the use of the spatial 2-back task induces postural sway in the participants. This effect was most profound when looking at the monitor and least recognizable in the data of the tablet.


Subject(s)
Smart Glasses , Humans , Postural Balance , Ergonomics , Risk Assessment , Tablets
4.
Sci Rep ; 12(1): 19655, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385632

ABSTRACT

Locomotor training based in virtual reality (VR) is promising for motor skill learning, with transfer of VR skills in turn required to benefit daily life locomotion. This study aimed to assess whether VR-adapted obstacle avoidance can be transferred to a physical obstacle and whether such transfer is retained after 1 week. Thirty-two young adults were randomly divided between two groups. A control group (CG) merely walked on a treadmill and an intervention group (IG) trained crossing 50 suddenly-appearing virtual obstacles. Both groups crossed three physical obstacles (transfer task) immediately after training (T1) and 1 week later (T2, transfer retention). Repeated practice in VR led to a decrease in toe clearance along with greater ankle plantarflexion and knee extension. IG participants crossed physical obstacles with a lower toe clearance compared to CG but revealed significantly higher values compared to the VR condition. VR adaptation was fully retained over 1 week. For physical obstacle avoidance there were differences between toe clearance of the third obstacle at T1 and the first obstacle at T2, indicating only partial transfer retention. We suggest that perception-action coupling, and thus sensorimotor coordination, may differ between VR and the physical world, potentially limiting retained transfer between conditions.


Subject(s)
Virtual Reality , Young Adult , Humans , Walking , Adaptation, Physiological , Locomotion , Motor Skills
5.
Front Sports Act Living ; 4: 1015394, 2022.
Article in English | MEDLINE | ID: mdl-36275443

ABSTRACT

Since the mid-2000s, perturbation-based balance training has been gaining interest as an efficient and effective way to prevent falls in older adults. It has been suggested that this task-specific training approach may present a paradigm shift in fall prevention. In this review, we discuss key concepts and common issues and questions regarding perturbation-based balance training. In doing so, we aim to provide a comprehensive synthesis of the current evidence on the mechanisms, feasibility and efficacy of perturbation-based balance training for researchers and practitioners. We address this in two sections: "Principles and Mechanisms" and "Implementation in Practice." In the first section, definitions, task-specificity, adaptation and retention mechanisms and the dose-response relationship are discussed. In the second section, issues related to safety, anxiety, evidence in clinical populations (e.g., Parkinson's disease, stroke), technology and training devices are discussed. Perturbation-based balance training is a promising approach to fall prevention. However, several fundamental and applied aspects of the approach need to be further investigated before it can be widely implemented in clinical practice.

6.
J Strength Cond Res ; 36(11): 3246-3255, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36287182

ABSTRACT

ABSTRACT: Lambrianides, Y, Epro, G, Smith, K, Mileva, K, James, D, and Karamanidis, K. Impact of different mechanical and metabolic stimuli on the temporal dynamics of muscle strength adaptation. J Strength Cond Res 36(11): 3246-3255, 2022-A fundamental task in exercise physiology is to determine and ultimately improve the adaptations that take place in the human body, an integrated network of various physiological systems, for example, muscle, tendon, and bone. Investigating the temporal dynamics (time course) of adaptations in these diverse systems may help us gain new knowledge about the functioning of the neuromotor system in healthy and pathological conditions. The aim of this review was to explore the temporal dynamics of muscular strength adaptations in studies implementing a resistance training intervention. In addition, we categorized these studies under mechanical or metabolic stimuli to identify whether certain stimuli cause faster muscle strength gains. Searches were performed using PubMed and Google Scholar databases. The review comprised 708 subjects from 57 training groups within 40 studies that met the inclusion criteria. The results revealed that the mean time point of first significant increase in muscle strength of all studies was 4.3 weeks, and the corresponding increase was on average about 17%. A plateau in muscle strength increase (∼25%) was found to occur between weeks 8 and 12. Categorization into stimuli groups revealed that performing training in a hypoxic environment is likely to produce a leftward shift (∼25% increase at ∼2.8 weeks) in the dose-response relationship compared with blood flow restriction and supplementation. However, stimuli that cause faster muscle strength gains may also induce imbalanced adaptation between the muscle and the surrounding biological structures, potentially triggering a degradation in some parts of the network (i.e., leading to an increased risk of injury).


Subject(s)
Muscle, Skeletal , Resistance Training , Humans , Muscle, Skeletal/physiology , Muscle Strength/physiology , Resistance Training/methods , Adaptation, Physiological/physiology , Acclimatization
7.
Sensors (Basel) ; 22(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35408164

ABSTRACT

The assessment of the force-length relationship under mechanical loading is widely used to evaluate the mechanical properties of tendons and to gain information about their adaptation, function, and injury. This study aimed to provide a time-efficient ultrasound method for assessing Achilles tendon mechanical properties. On two days, eleven healthy young non-active adults performed eight maximal voluntary isometric ankle plantarflexion contractions on a dynamometer with simultaneous ultrasonographic recording. Maximal tendon elongation was assessed by digitizing ultrasound images at rest and at maximal tendon force. Achilles tendon stiffness index was calculated from the ratio of tendon force-to-strain. No within- and between-day differences were detected between the proposed method and manual frame by frame tracking in Achilles tendon maximal force, maximal elongation, maximal strain, and stiffness index. The overall coefficient of variation between trials ranged from 3.4% to 10.3% and average difference in tendon tracking between methods was less than 0.6% strain. Furthermore, an additional assessment demonstrated significant differences between elite athletes, healthy young, and older adults in Achilles tendon force and stiffness index. Hence, the analysis has the potential to reliably and accurately monitor changes in Achilles tendon mechanical properties due to aging and altered mechanical loading in a time-efficient manner.


Subject(s)
Achilles Tendon , Achilles Tendon/diagnostic imaging , Aged , Humans , Isometric Contraction , Muscle, Skeletal/diagnostic imaging , Reproducibility of Results , Ultrasonography
8.
Hum Mov Sci ; 82: 102937, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35217390

ABSTRACT

Generalisation of adaptations is key to effective stability control facing variety of postural threats during daily life activity. However, in a previous study we could demonstrate that adaptations to stability control do not necessarily transfer to an untrained motor task. Here, we examined the dynamic stability and modular organisation of motor responses to different perturbations (i.e. unpredictable gait-trip perturbations and subsequent loss of anterior stability in a lean-and-release protocol) in a group of young and middle-aged adults (n = 57; age range 19-53 years) to detect potential neuromotor factors limiting transfer of adaptations within the stability control system. We hypothesized that the motor system uses different modular organisation in recovery responses to tripping and lean-and-release, which may explain lack in positive transfer of adaptations in stability control. After eight trip-perturbations participants increased their dynamic stability during the first recovery step (p < 0.001), yet they showed no significant improvement to the untrained lean-and-release transfer task compared to controls who did not undergo the perturbation exposure (p = 0.44). Regarding the neuromuscular control of responses, lower number of synergies (3 vs. 4) was found for the lean-and-release compared to the gait-trip perturbation task, revealing profound differences in both the timing and function of the recruited muscles to match the biomechanical specificity of different perturbations. Our results provide indirect evidence that the motor system uses different modular organisation in diverse perturbation responses, what possibly inhibits inter-task generalisation of adaptations in stability control.


Subject(s)
Gait , Postural Balance , Adaptation, Physiological/physiology , Adult , Biomechanical Phenomena , Gait/physiology , Generalization, Psychological , Humans , Middle Aged , Muscles , Postural Balance/physiology , Young Adult
9.
Sensors (Basel) ; 22(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35009886

ABSTRACT

Use of head-mounted displays (HMDs) and hand-held displays (HHDs) may affect the effectiveness of stability control mechanisms and impair resistance to falls. This study aimed to examine whether the ability to control stability during locomotion is diminished while using HMDs and HHDs. Fourteen healthy adults (21-46 years) were assessed under single-task (no display) and dual-task (spatial 2-n-back presented on the HMD or the HHD) conditions while performing various locomotor tasks. An optical motion capture system and two force plates were used to assess locomotor stability using an inverted pendulum model. For perturbed standing, 57% of the participants were not able to maintain stability by counter-rotation actions when using either display, compared to the single-task condition. Furthermore, around 80% of participants (dual-task) compared to 50% (single-task) showed a negative margin of stability (i.e., an unstable body configuration) during recovery for perturbed walking due to a diminished ability to increase their base of support effectively. However, no evidence was found for HMDs or HHDs affecting stability during unperturbed locomotion. In conclusion, additional cognitive resources required for dual-tasking, using either display, are suggested to result in delayed response execution for perturbed standing and walking, consequently diminishing participants' ability to use stability control mechanisms effectively and increasing the risk of falls.


Subject(s)
Accidental Falls , Smart Glasses , Adult , Gait , Humans , Locomotion , Standing Position , Walking
10.
J Biomech ; 130: 110863, 2022 01.
Article in English | MEDLINE | ID: mdl-34844033

ABSTRACT

M. abductor hallucis (AbH) is the strongest intrinsic foot muscle and its dysfunction underlies various foot disorders. Attempts to strengthen the muscle by voluntary exercises are constrained by its complex morphology and oblique mechanical action, which leads to an inability even in asymptomatic individuals to fully activate AbH. This study investigated the extent and magnitude of this inability whilst also providing preliminary evidence for the virtue of targeted sub-maximum neuromuscular electrical stimulation (NMES) as a countermeasure for an AbH activation deficit. The voluntary activation ratio (VAR) was assessed via the twitch interpolation technique in the left AbH of 13 healthy participants during maximum voluntary 1st metatarsophalangeal joint flexion-abduction contractions (MVC). Participants were grouped ("able" or "unable") based on their ability to fully activate AbH (VAR ≥ 0.9). 7 s-NMES trains (20 Hz) were then delivered to AbH with current intensity increasing from 150% to 300% motor threshold (MT) in 25% increments. Perceived comfort was recorded (10 cm-visual analogue scale; VAS). Only 3 participants were able to activate AbH to its full capacity (able, mean (range) VAR: 0.93 (0.91-0.95), n = 3; unable: 0.69 (0.36-0.83), n = 10). However, the maximum absolute forces produced during the graded sub-maximum direct-muscle NMES protocol were comparable between groups implying that the peripheral contractility of AbH is intact irrespective of the inability of individuals to voluntary activate AbH to its full capacity. These findings demonstrate that direct-muscle NMES overcomes the prevailing inability for high voluntary AbH activation and therefore offers the potential to strengthen the healthy foot and restore function in the pathological foot.


Subject(s)
Foot , Muscle, Skeletal , Electric Stimulation , Exercise , Humans , Lower Extremity , Movement
11.
J Strength Cond Res ; 36(12): 3345-3351, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-34537800

ABSTRACT

ABSTRACT: AminiAghdam, S, Epro, G, James, D, and Karamanidis, K. Leaning the trunk forward decreases patellofemoral joint loading during uneven running. J Strength Cond Res 36(12): 3345-3351, 2022-Although decline surfaces or a more upright trunk posture during running increase the patellofemoral joint (PFJ) contact force and stress, less is known about these kinetic parameters under simultaneous changes to the running posture and surface height. This study aimed to investigate the interaction between Step (10-cm drop-step and level step) and Posture (trunk angle from the vertical: self-selected, ∼15°; backward, ∼0°; forward, ∼25°) on PFJ kinetics (primary outcomes) and knee kinematics and kinetics as well as hip and ankle kinetics (secondary outcomes) in 12 runners at 3.5 ms -1 . Two-way repeated measures analyses of variance ( α = 0.05) revealed no step-related changes in peak PFJ kinetics across running postures; however, a decreased peak knee flexion angle and increased joint stiffness in the drop-step only during backward trunk-leaning. The Step main effect revealed significantly increased peak hip and ankle extension moments in the drop-step, signifying pronounced mechanical demands on these joints. The Posture main effect revealed significantly higher and lower PFJ kinetics during backward and forward trunk-leaning, respectively, when compared with the self-selected condition. Forward trunk-leaning yielded significantly lower peak knee extension moments and higher hip extension moments, whereas the opposite effects occurred with backward trunk-leaning. Overall, changes to the running posture, but not to the running surface height, influenced the PFJ kinetics. In line with the previously reported efficacy of forward trunk-leaning in mitigating PFJ stress while even or decline running, this technique, through a distal-to-proximal joint load redistribution, also seems effective during running on surfaces with height perturbations.


Subject(s)
Patellofemoral Joint , Humans , Range of Motion, Articular , Biomechanical Phenomena , Knee Joint , Posture
12.
Eur J Sport Sci ; 22(8): 1188-1195, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34077302

ABSTRACT

This study aimed to investigate the role of trunk posture in running locomotion. Twelve recreational runners ran in the laboratory across even and uneven ground surface (expected 10 cm drop-step) with three trunk-lean angles from the vertical (self-selected, ∼15°; anterior, ∼25°; posterior, ∼0°) while 3D kinematic and kinetic data were collected using a 3D motion-capture-system and two embedded force-plates. Two-way repeated measures ANOVAs (α = 0.05) compared lower-limb joint mechanics (angles, moments, energy absorption and generation) and ground-reaction-force parameters (braking and propulsive impulse) between Step (level and drop) and Posture conditions. The Step-by-Posture interaction revealed decreased hip energy generation, and greater peak knee extension moment in the drop-step during running with posterior versus anterior trunk-lean. Furthermore, energy absorption across hip and ankle nearly doubled in the drop-step across all running conditions. The Step main effect revealed that the knee and ankle energy absorption, ankle energy generation, ground-reaction-force, and braking impulse significantly increased in the drop-step. The Posture main effect revealed that, compared with a self-selected trunk-lean, the knee's energy absorption/generation, ankle's energy generation and the braking impulse were either retained or attenuated when leaning the trunk anteriorly. The opposite effects occurred with a posterior trunk-lean. In conclusion, while the pronounced mechanical ankle stress in drop-steps is marginally affected by posture, changing the trunk-lean reorganizes the load distribution across the knee and hip joints. Leaning the trunk anteriorly in running shifts loading from the knee to the hip not only in level running but also when coping with ground-level changes.HighlightsChanging the trunk-lean when running reorganizes the load distribution across the knee and hip joints.Leaning the trunk anteriorly from a habitual trunk posture during running attenuates the mechanical stress on the knee, while the opposite effect occurs with a posterior trunk-lean, irrespective to the ground surface uniformity.The effect of posture on pronounced mechanical ankle stress in small perturbation height during running is marginal.Leaning the trunk anteriorly shifts loading from the knee to the hip not only in level running but also when coping with small perturbation height.


Subject(s)
Lower Extremity , Torso , Ankle Joint , Biomechanical Phenomena , Hip Joint , Humans , Knee , Knee Joint
13.
Appl Bionics Biomech ; 2021: 9914278, 2021.
Article in English | MEDLINE | ID: mdl-34721664

ABSTRACT

Stiffness, the resistance to deformation due to force, has been used to model the way in which the lower body responds to landing during cyclic motions such as running and jumping. Vertical, leg, and joint stiffness provide a useful model for investigating the store and release of potential elastic energy via the musculotendinous unit in the stretch-shortening cycle and may provide insight into sport performance. This review is aimed at assessing the effect of vertical, leg, and joint stiffness on running performance as such an investigation may provide greater insight into performance during this common form of locomotion. PubMed and SPORTDiscus databases were searched resulting in 92 publications on vertical, leg, and joint stiffness and running performance. Vertical stiffness increases with running velocity and stride frequency. Higher vertical stiffness differentiated elite runners from lower-performing athletes and was also associated with a lower oxygen cost. In contrast, leg stiffness remains relatively constant with increasing velocity and is not strongly related to the aerobic demand and fatigue. Hip and knee joint stiffness are reported to increase with velocity, and a lower ankle and higher knee joint stiffness are linked to a lower oxygen cost of running; however, no relationship with performance has yet been investigated. Theoretically, there is a desired "leg-spring" stiffness value at which potential elastic energy return is maximised and this is specific to the individual. It appears that higher "leg-spring" stiffness is desirable for running performance; however, more research is needed to investigate the relationship of all three lower limb joint springs as the hip joint is often neglected. There is still no clear answer how training could affect mechanical stiffness during running. Studies including muscle activation and separate analyses of local tissues (tendons) are needed to investigate mechanical stiffness as a global variable associated with sports performance.

14.
Eur Rev Aging Phys Act ; 18(1): 20, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34615457

ABSTRACT

BACKGROUND: The assessment of stability recovery performance following perturbations contributes to the determination of fall resisting skills. This study investigated the association between stability recovery performances in two perturbation tasks (lean-and-release versus tripping). METHODS: Healthy adults (12 young: 24 ± 3 years; 21 middle-aged: 53 ± 5 years; 11 old: 72 ± 5 years) were suddenly released from a forward-inclined position attempting to recover stability with a single step. In a second task, all participants experienced a mechanically induced trip during treadmill walking. To assess dynamic stability performance, the antero-posterior margin of stability (MoS), the base of support (BoS), and the rate of increase in BoS were determined at each foot touchdown (TD) for both tasks. RESULTS: Only weak to moderate correlations in dynamic stability performance parameters were found between the two tasks (0.568 > r > 0.305, 0.001 < p < 0.04). A separation of participants according to the number of steps required to regain stability in the lean-and-release task revealed that multiple- (more than one step) compared to single-steppers showed a significantly lower MoS at TD (p = 0.003; g = 1.151), lower BoS at TD (p = 0.019; g = 0.888) and lower rate of increase in BoS until TD (p = 0.002; g = 1.212) after release. Despite these profound subgroup differences in the lean-and-release task, no differences between multiple- and single-steppers were observed in the stability recovery performance during tripping. CONCLUSION: The results provide evidence that the ability to effectively control dynamic stability following a sudden balance disturbance in adults across a wide age range is limited in its generalisation for different perturbation tasks.

15.
Front Sports Act Living ; 3: 682861, 2021.
Article in English | MEDLINE | ID: mdl-34095828

ABSTRACT

Given that falls most commonly occur during walking due to unexpected balance perturbations like trips and slips, walking-based balance assessment including walking stability and adaptability to such perturbations could be beneficial for fall risk assessment in older adults. This cross-sectional study reanalyzed data from two larger studies conducted with the same walking protocol. Participants completed unperturbed walking trials at speeds of 0.4 m/s up to 1.8 m/s in 0.2 m/s steps. Ten unannounced treadmill belt acceleration perturbations were then applied while participants walked at equivalent stability, assessed using the margins of stability. Retrospective (12 months) falls incidence was collected to divide participants into people with and without a history of falls. Twenty older adults (mean age 70.2 ± 2.9 years) were included in this analysis; eight people with one or more recent falls and 12 people without, closely matched by sex, age and height. No significant differences were found in unperturbed walking parameters or their variability. Overall perturbation-recovery step behavior differed slightly (not statistically significant) between the groups after the first perturbation and differences became more pronounced and significant after repetition of perturbations. The No-Falls group significantly reduced the number of recovery steps needed across the trials, whereas the Falls group did not show these improvements. People with a previous fall tended to have slightly delayed and more variable recovery responses after perturbation compared to non-fallers. Non-fallers demonstrate more signs of adaptability to repeated perturbations. Adaptability may give a broader indication of the ability of the locomotor system to respond and improve responses to sudden walking perturbations than unperturbed walking variability or recovery to a single novel perturbation. Adaptability may thus be a more useful marker of falls history in older adults and should be considered in further research.

17.
Hum Mov Sci ; 76: 102769, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33581561

ABSTRACT

Rapid stepping to preserve stability is a crucial action in avoiding a fall. It is also an important measure in the assessment of fall-resisting skills. We examined whether volitional step execution correlates with recovery stepping performance after sudden balance loss for adults of different ages. In addition, we investigated whether volitional step performance can discriminate between individuals with high and low balance recovery capabilities, i.e. between those making single versus multiple steps after balance perturbation. Healthy adults (28 young, 43 middle-aged and 26 older; 24 ± 4, 52 ± 5 and 72 ± 5 years respectively) performed a single step in the anterior direction volitionally in response to a mechanical stimulus to the heel. In a second stepping task, participants experienced sudden anterior balance loss in a lean-and-release protocol. For both tasks, an optical motion capture system was used to assess stepping kinematics. We found on average 28% shorter reaction times, 46% faster maximal step velocities and 48% higher rates of increase in base of support across all participants after sudden balance loss compared to volitional stepping (p < 0.001). There was a significant age-related decline in recovery stepping performance after sudden balance loss: 24/26 older, 15/43 middle-aged and none of the younger adults required two or more steps to regain balance (p < 0.001). Multiple- compared to single-steppers had on average 23% shorter step lengths and 12% lower maximal step velocities for the lean-and-release task (p < 0.01). Multiple-steppers also had reduced rates of increase in base of support for both stepping tasks (14% for balance recovery and 11% for volitional stepping). Furthermore, in examining the relationship between the results of the two tasks, only weak to moderate correlations were observed for step velocity and rate of increase in base of support (0.36 ≤ r ≤ 0.52; p < 0.001). Thus, performance in volitional step execution has a low potential to explain variability in recovery response after sudden balance loss in adults across the lifespan and hence seems less suitable to be used to identify deficiencies in reactive stepping responses necessary to cope with sudden balance disturbances.


Subject(s)
Accidental Falls , Motor Skills/physiology , Postural Balance/physiology , Adult , Aged , Biomechanical Phenomena , Female , Geriatrics , Humans , Longevity , Male , Middle Aged , Walking , Young Adult
18.
J Exp Biol ; 224(Pt 1)2021 01 06.
Article in English | MEDLINE | ID: mdl-33257431

ABSTRACT

The role of trunk orientation during uneven running is not well understood. This study compared the running mechanics during the approach step to and the step down for a 10 cm expected drop, positioned halfway through a 15 m runway, with that of the level step in 12 participants at a speed of 3.5 m s-1 while maintaining self-selected (17.7±4.2 deg; mean±s.d.), posterior (1.8±7.4 deg) and anterior (26.6±5.6 deg) trunk leans from the vertical. Our findings reveal that the global (i.e. the spring-mass model dynamics and centre-of-mass height) and local (i.e. knee and ankle kinematics and kinetics) biomechanical adjustments during uneven running are specific to the step nature and trunk posture. Unlike the anterior-leaning posture, running with a posterior trunk lean is characterized by increases in leg angle, leg compression, knee flexion angle and moment, resulting in a stiffer knee and a more compliant spring-leg compared with the self-selected condition. In the approach step versus the level step, reductions in leg length and stiffness through the ankle stiffness yield lower leg force and centre-of-mass position. Contrariwise, significant increases in leg length, angle and force, and ankle moment, reflect in a higher centre-of-mass position during the step down. Plus, ankle stiffness significantly decreases, owing to a substantially increased leg compression. Overall, the step down appears to be dominated by centre-of-mass height changes, regardless of having a trunk lean. Observed adjustments during uneven running can be attributed to anticipation of changes to running posture and height. These findings highlight the role of trunk posture in human perturbed locomotion relevant for the design and development of exoskeleton or humanoid bipedal robots.


Subject(s)
Leg , Torso , Biomechanical Phenomena , Humans , Knee Joint , Posture
19.
Appl Ergon ; 87: 103131, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32501252

ABSTRACT

Stairs are associated with falls, especially when step dimensions are inconsistent. However, the mechanisms by which inconsistencies cause this higher risk are mostly theoretical. In this experimental study we quantified the effect of inconsistent rise heights on biomechanical measurements of stepping safety from younger (n = 26) and older adults (n = 33). In ascent, both groups decreased foot clearance (~9 mm) over the inconsistently higher step (F(1,56) = 48.4, p < 0.001). In descent, they reduced foot contact length on the higher step by 3% (F(1,56) = 9.1, p < 0.01). Reduced clearance may result in a toe-catch potentially leading to a trip, while reduced foot contact lengths increase the risk of overstepping which may also lead to a fall. These effects occurred because participants did not alter their foot trajectories, indicating they either did not detect or were not able to adjust to the inconsistent rise, increasing the likelihood of a fall. Consistent stair construction is vital, and existing inconsistencies should be identified and safety interventions developed.


Subject(s)
Age Factors , Equipment Design/adverse effects , Stair Climbing/physiology , Accidental Falls , Adult , Aged , Biomechanical Phenomena , Female , Foot/physiology , Gait/physiology , Humans , Male , Postural Balance , Safety , Young Adult
20.
J Biomech ; 100: 109606, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31964519

ABSTRACT

In vivo assessment of the force-generating capacity of m. abductor hallucis (AbH) is problematic due to its combined abduction-flexion action and the inability of some individuals to voluntarily activate the muscle. This study investigated direct muscle electrical stimulation as a method to assess isometric force production in AbH about the 1st metatarsal phalangeal joint (1MPJ) at different muscle-tendon lengths, with the aim of identifying an optimal angle for force production. A 7 s stimulation train was delivered at 20 Hz pulse frequency and sub-maximal (150% motor threshold) intensity to the AbH of the left foot in 16 participants whilst seated, and with the Hallux suspended from a force transducer in 0°,5°,10°,15° and 20° 1MPJ dorsal flexion. Reflective markers positioned on the foot and force transducer were tracked with 5 optical cameras to continuously record the force profile and calculate the external 1MPJ joint flexion moment at each joint configuration. A parabolic relationship was found between AbH force production and 1MPJ configuration. The highest 1MPJ joint moments induced by electrical stimulation were found between 10° and 15° of Hallux dorsal flexion. However, the joint angle (p < 0.001; η2 = 0.86) changed significantly across all but one 1MPJ configurations tested during the stimulation-evoked contraction, resulting in a significant change in the corresponding external moment arm (p < 0.001; η2 = 0.83). Therefore, the changes in joint geometry during contraction should be accounted for to prevent an underestimation of the resulting joint moment. We conclude that direct muscle electrical stimulation combined with dynamometry offers a robust method for standardised assessment of AbH sub-maximal isometric force production.


Subject(s)
Electric Stimulation , Mechanical Phenomena , Muscle, Skeletal/physiology , Adult , Biomechanical Phenomena , Female , Foot/physiology , Hallux , Humans , Isometric Contraction , Male , Movement , Tendons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...