Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(23): 8861-8870, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38009856

ABSTRACT

Optimizing a target function over the space of organic molecules is an important problem appearing in many fields of applied science but also a very difficult one due to the vast number of possible molecular systems. We propose an evolutionary Monte Carlo algorithm for solving such problems which is capable of straightforwardly tuning both exploration and exploitation characteristics of an optimization procedure while retaining favorable properties of genetic algorithms. The method, dubbed MOSAiCS (Metropolis Optimization by Sampling Adaptively in Chemical Space), is tested on problems related to optimizing components of battery electrolytes, namely, minimizing solvation energy in water or maximizing dipole moment while enforcing a lower bound on the HOMO-LUMO gap; optimization was carried out over sets of molecular graphs inspired by QM9 and Electrolyte Genome Project (EGP) data sets. MOSAiCS reliably generated molecular candidates with good target quantity values, which were in most cases better than the ones found in QM9 or EGP. While the optimization results presented in this work sometimes required up to 106 QM calculations and were thus feasible only thanks to computationally efficient ab initio approximations of properties of interest, we discuss possible strategies for accelerating MOSAiCS using machine learning approaches.

2.
J Chem Phys ; 156(11): 114101, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35317562

ABSTRACT

We introduce an electronic structure based representation for quantum machine learning (QML) of electronic properties throughout chemical compound space. The representation is constructed using computationally inexpensive ab initio calculations and explicitly accounts for changes in the electronic structure. We demonstrate the accuracy and flexibility of resulting QML models when applied to property labels, such as total potential energy, HOMO and LUMO energies, ionization potential, and electron affinity, using as datasets for training and testing entries from the QM7b, QM7b-T, QM9, and LIBE libraries. For the latter, we also demonstrate the ability of this approach to account for molecular species of different charge and spin multiplicity, resulting in QML models that infer total potential energies based on geometry, charge, and spin as input.

3.
J Chem Phys ; 151(17): 174116, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703487

ABSTRACT

We propose an algorithm for molecular dynamics or Monte Carlo simulations that uses an interpolation procedure to estimate potential energy values from energies and gradients evaluated previously at points of a simplicial mesh. We chose an interpolation procedure that is exact for harmonic systems and considered two possible mesh types: Delaunay triangulation and an alternative anisotropic triangulation designed to improve performance in anharmonic systems. The mesh is generated and updated on the fly during the simulation. The procedure is tested on two-dimensional quartic oscillators and on the path integral Monte Carlo evaluation of the HCN/DCN equilibrium isotope effect.

4.
J Chem Phys ; 151(13): 134116, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31594323

ABSTRACT

Path integral calculations of equilibrium isotope effects and isotopic fractionation are expensive due to the presence of path integral discretization errors, statistical errors, and thermodynamic integration errors. Whereas the discretization errors can be reduced by high-order factorization of the path integral and statistical errors by using centroid virial estimators, two recent papers proposed alternative ways to completely remove the thermodynamic integration errors: Cheng and Ceriotti [J. Chem. Phys. 141, 244112 (2015)] employed a variant of free-energy perturbation called "direct estimators," while Karandashev and Vanícek [J. Chem. Phys. 143, 194104 (2017)] combined the thermodynamic integration with a stochastic change of mass and piecewise-linear umbrella biasing potential. Here, we combine the former approach with the stochastic change in mass in order to decrease its statistical errors when applied to larger isotope effects and perform a thorough comparison of different methods by computing isotope effects first on a harmonic model and then on methane and methanium, where we evaluate all isotope effects of the form CH4-xDx/CH4 and CH5-xDx +/CH5 +, respectively. We discuss the reasons for a surprising behavior of the original method of direct estimators, which performed well for a much larger range of isotope effects than what had been expected previously, as well as some implications of our work for the more general problem of free energy difference calculations.

5.
Struct Dyn ; 4(6): 061501, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29282447

ABSTRACT

We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic structure calculations and fitted potential-energy surfaces are also compared directly with exact quantum dynamics results. The error inherent in the instanton approximation is found to be relatively small and similar in magnitude to that introduced by using fitted surfaces. The kinetic isotope effect computed by the quantum instanton is even more accurate, and although it is computationally more expensive, the efficiency can be improved by path-integral acceleration techniques. We also test a simple approach for designing potential-energy surfaces for the example of proton transfer in malonaldehyde. The tunneling splittings are computed, and although they are found to deviate from experimental results, the ratio of the splitting to that of an isotopically substituted form is in much better agreement. We discuss the strengths and limitations of the potential-energy surface and based on our findings suggest ways in which it can be improved.

6.
J Chem Phys ; 143(19): 194104, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26590524

ABSTRACT

Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅Hα + HßHγ → HαHß + ⋅ Hγ reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH4 + ⋅ H ⇌ ⋅ CH3 + H2 forward and backward reactions.

SELECTION OF CITATIONS
SEARCH DETAIL