Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
World J Cardiol ; 16(1): 27-39, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38313389

ABSTRACT

BACKGROUND: Lack of mobilization and prolonged stay in the intensive care unit (ICU) are major factors resulting in the development of ICU-acquired muscle weakness (ICUAW). ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery, and may be a risk factor for prolonged duration of mechanical ventilation, associated with a higher risk of readmission and higher mortality. Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay. Neuromuscular electrical stimulation (NMES) is an alternative modality of exercise in patients with muscle weakness. A major advantage of NMES is that it can be applied even in sedated patients in the ICU, a fact that might enhance early mobilization in these patients. AIM: To evaluate safety, feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery. METHODS: We performed a search on Pubmed, Physiotherapy Evidence Database (PEDro), Embase and CINAHL databases, selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials (RCTs) that included implementation of NMES in patients before after cardiac surgery. RCTs were assessed for methodological rigor and risk of bias via the PEDro. The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function. RESULTS: Ten studies were included in our systematic review, resulting in 703 participants. Almost half of them performed NMES and the other half were included in the control group, treated with usual care. Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery. Functional capacity was assessed in 8 studies via 6MWT or other indices, and improved only in 1 study before and in 1 after cardiac surgery. Nine studies explored the effects of NMES on muscle strength and function and, most of them, found increase of muscle strength and improvement in muscle function after NMES. NMES was safe in all studies without any significant complication. CONCLUSION: NMES is safe, feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery, but has no significant effect on functional capacity.

3.
J Clin Med ; 12(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37892730

ABSTRACT

Endothelial dysfunction and inflammation are common pathophysiological characteristics of chronic heart failure (CHF). Endothelial progenitor cells (EPCs) are recognized as useful markers of vascular damage and endothelial repair. The aim of this study was to investigate the effects of a cardiac rehabilitation program on EPCs and inflammatory profile in CHF patients of different severity. Forty-four patients with stable CHF underwent a 36-session cardiac rehabilitation program. They were separated into two different subgroups each time, according to the median peak VO2, predicted peak VO2, VE/VCO2 slope, and ejection fraction. EPCs, C-reactive protein (CRP), interleukin 6 (IL-6), interleukin 10 (IL-10), and vascular endothelial growth factor (VEGF) were measured. Flow cytometry was used for the quantification of EPCs. Mobilization of EPCs increased and the inflammatory profile improved within each severity group (p < 0.05) after the cardiac rehabilitation program, but there were no statistically significant differences between groups (p > 0.05). A 36-session cardiac rehabilitation program has similar beneficial effects on the mobilization of EPCs and on the inflammatory profile in patients with CHF of different severity.

4.
J Crit Care Med (Targu Mures) ; 9(2): 87-96, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37593254

ABSTRACT

Background: Millions of people face critical illnesses and need to be hospitalized in an Intensive Care Unit (ICU) annually worldwide. Despite the fact that survival rates of these patients have increased, they develop various cognitive, psychological and functional impairments. This study aims to investigate the significance of the recovery interventions following intensive care unit discharge, the effectiveness of the rehabilitative protocols and their possible deficits. Methods: MEDLINE (PubMed) and Physiotherapy Evidence Database (PEDro) were searched for studies analyzing the recovery potentials post-ICU among adults, who spent at least 48 hours at the ICU. Methodological quality of the studies was assessed via PEDro Scale. Results: Nine randomized controlled trials were included. These took place mainly at specialized rehabilitation gyms as well as patients home environments. Studies analyses showed that treatment group showed improvement in functional ability in relation to control group. Nevertheless, differences between two groups were not statistically significant (P<0.05). The majority of studies assessed cardiorespiratory endurance and muscular strength. Conclusions: The included rehabilitation programs were determined to be effective. Although they didn't prove any statistically significant difference between groups, quality of life enhancements and stress reduction were reported. Hence, new randomized controlled trials are required in order to provide more accurate data on the potential benefits of rehabilitation strategies among post-ICU patients.

5.
World J Cardiol ; 15(4): 184-199, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37124974

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic syndrome characterized by insulin resistance and hyperglycemia that may lead to endothelial dysfunction, reduced functional capacity and exercise intolerance. Regular aerobic exercise has been promoted as the most beneficial non-pharmacological treatment of cardiovascular diseases. High intensity interval training (HIIT) seems to be superior than moderate-intensity continuous training (MICT) in cardiovascular diseases by improving brachial artery flow-mediated dilation (FMD) and cardiorespiratory fitness to a greater extent. However, the beneficial effects of HIIT in patients with T2DM still remain under investigation and number of studies is limited. AIM: To evaluate the effectiveness of high intensity interval training on cardiorespiratory fitness and endothelial function in patients with T2DM. METHODS: We performed a search on PubMed, PEDro and CINAHL databases, selecting papers published between December 2012 and December 2022 and identified published randomized controlled trials (RCTs) in the English language that included community or outpatient exercise training programs in patients with T2DM. RCTs were assessed for methodological rigor and risk of bias via the Physiotherapy Evidence Database (PEDro). The primary outcome was peak VO2 and the secondary outcome was endothelial function assessed either by FMD or other indices of microcirculation. RESULTS: Twelve studies were included in our systematic review. The 12 RCTs resulted in 661 participants in total. HIIT was performed in 310 patients (46.8%), MICT to 271 and the rest 80 belonged to the control group. Peak VO2 increased in 10 out of 12 studies after HIIT. Ten studies compared HIIT with other exercise regimens (MICT or strength endurance) and 4 of them demonstrated additional beneficial effects of HIIT over MICT or other exercise regimens. Moreover, 4 studies explored the effects of HIIT on endothelial function and FMD in T2DM patients. In 2 of them, HIIT further improved endothelial function compared to MICT and/or the control group while in the rest 2 studies no differences between HIIT and MICT were observed. CONCLUSION: Regular aerobic exercise training has beneficial effects on cardiorespiratory fitness and endothelial function in T2DM patients. HIIT may be superior by improving these parameters to a greater extent than MICT.

6.
Front Syst Neurosci ; 16: 880447, 2022.
Article in English | MEDLINE | ID: mdl-36211591

ABSTRACT

Background: Over the past few years, technological innovations have been increasingly employed to augment the rehabilitation of stroke patients. Virtual reality (VR) has gained attention through its ability to deliver a customized training session and to increase patients' engagement. Virtual reality rehabilitation programs allow the patient to perform a therapeutic program tailored to his/her needs while interacting with a computer-simulated environment. Purpose: This study aims to investigate the effectiveness of a fully immersive rehabilitation program using a commercially available head-mounted display in stroke patients. Methods: A systematic search was conducted in three databases, namely, PubMed, Google Scholar, and PEDro. Four hundred thirty-two references were identified. The keywords used for the literature search were in English, which are given as follows: immersive, virtual reality, neurorehabilitation, stroke, and head-mounted display. Additionally, applicable articles were identified through screening reference lists of relevant articles. Results: Only 12 studies used head-mounted display for immersing the patient into the virtual world. Apart from the feasibility of this new technology, a range of benefits were identified, especially in terms of functional ability as measured by FIM or Barthel, the Action Research arm Test, Box and Block Test, Fugl-Meyer assessment of physical performance, strength, and balance outcomes. Conclusion: The results from this review support the potential beneficial effect of fully immersive virtual reality in the rehabilitation of stroke patients, maximizing recovery through increased motivation and adherence.

7.
Acta Cardiol Sin ; 38(4): 516-520, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35873120

ABSTRACT

Purpose: The purpose of this study was to investigate the effect of a cardiac rehabilitation program on the acute response on endothelial progenitor cells and circulating endothelial cells after maximal exercise in patients with chronic heart failure of different severity. Methods: Forty-four chronic heart failure patients were enrolled in a 36-session cardiac rehabilitation program. All patients underwent an initial maximal cardiopulmonary exercise test before and a final maximal cardiopulmonary exercise test after the cardiac rehabilitation program. The patients were divided in two groups of severity according to the median value of peak VO2. Blood was collected at 4 time points; 2 time points at rest, and 2 time points after each cardiopulmonary exercise test. Five endothelial cellular populations were quantified by flow cytometry. Results: Although there was a higher increase in the mobilization of subgroups of endothelial progenitor cells and circulating endothelial cells after the final cardiopulmonary exercise test compared to the initial test within each severity group (p < 0.05), no significant differences between severity groups were observed (p > 0.05). Conclusions: A 36-session cardiac rehabilitation program had similar beneficial effects on the acute response of endothelial progenitor cells and circulating endothelial cells after maximal exercise in patients with chronic heart failure of different severity.

8.
J Cardiovasc Dev Dis ; 9(7)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35877584

ABSTRACT

Heart failure (HF) is a major public health issue worldwide with increased prevalence and a high number of hospitalizations. Patients with chronic HF and either reduced ejection fraction (HFrEF) or mildly reduced ejection fraction (HFmrEF) present vascular endothelial dysfunction and significantly decreased circulating levels of endothelial progenitor cells (EPCs). EPCs are bone marrow-derived cells involved in endothelium regeneration, homeostasis, and neovascularization. One of the unsolved issues in the field of EPCs is the lack of an established method of identification. The most widely approved method is the use of monoclonal antibodies and fluorescence-activated cell sorting (FACS) analysis via flow cytometry. The most frequently used markers are CD34, VEGFR-2, CD45, CD31, CD144, and CD146. Exercise training has demonstrated beneficial effects on EPCs by increasing their number in peripheral circulation and improving their functional capacities in patients with HFrEF or HFmrEF. There are two potential mechanisms of EPCs mobilization: shear stress and the hypoxic/ischemic stimulus. The combination of both leads to the release of EPCs in circulation promoting their repairment properties on the vascular endothelium barrier. EPCs are important therapeutic targets and one of the most promising fields in heart failure and, therefore, individualized exercise training programs should be developed in rehabilitation centers.

9.
HIV Res Clin Pract ; 23(1): 107-119, 2022 12.
Article in English | MEDLINE | ID: mdl-35352630

ABSTRACT

Background: The benefits derived from supervised aerobic exercise in people living with human immunofeficiency virus- HIV (PLWH) have not yet been clearly identified.Objective: To evaluate the impact of supervised aerobic exercise on immunological, cardiorespiratory, pulmonary, hemodynamic and mental parameters of PLWH.Methods: A systematic review was carried out in accordance to PRISMA guidelines. PubMed, Physiotherapy Evidence Database (PEDro) and Cochrane Central Register of Controlled Trials (CENTRAL) were screened up to August 2021, for the identification of English written randomized trials, with participants aged 18 years and older, at any stage of the disease, with or without co-morbidities. The risk of bias assessment was conducted according to the Cochrane Collaboration's tool for assessing risk of bias. Meta- analyses were conducted using continuous, inverse variance, random-effects model.Results: Ten studies were suitable for meta-analysis based on inclusion criteria. Supervised aerobic exercise appeared to have beneficial effects on depressive symptoms [mean difference (MD)= -4.18 (confidence interval (CI)= (-6.55)-(-1.81), Z = 3.46, p = 0.0005, I2=0%, n = 2], forced expiratory volume in 1 sec [MD = 0.70, CI = 0.39-1.00, Z = 4.41, p < 0.0001, I2=0%, n = 2], and on the maximum oxygen uptake [MD = 1.38, CI = -0.02-2.78, Z = 1.94, p = 0.05, I2=94%, n = 4] of PLWH. No exercise effect was found for CD4 T-cell count (p = 0.16, n = 5), systolic blood pressure (p = 0.91, n = 2) and diastolic blood pressure (p = 0.72, n = 2).Conclusions: Supervised continuous aerobic exercise may improve lung function, depressive symptomatology and aerobic capacity of PLWH, however, the small number of available studies and the high heterogeneity concerning VO2max demonstrate the need for more research in this area.


Subject(s)
HIV Infections , HIV , Humans , Oxygen Consumption , Oxygen , Randomized Controlled Trials as Topic , Exercise
11.
J Cardiovasc Dev Dis ; 8(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34940519

ABSTRACT

The purpose of this study was to compare the acute cardiorespiratory responses and time spent above different %VO2peak intensities between three "iso-work" protocols: (a) a high intensity interval training protocol (HIIT), (b) a higher intensity continuous protocol (CON70) and (c) a lower intensity continuous protocol (CON50) in patients with chronic heart failure (CHF). Ten male CHF patients (aged 55.1 ± 16.2 years) performed in separate days a single session of a HIIT protocol consisted of 4 sets × 4 min cycling at 80% VO2peak with 3 min of recovery at 50% VO2peak, a CON70 protocol corresponding to 70% VO2peak and a CON50 protocol corresponding to 50% VO2peak. Cardiopulmonary data were collected by an online gas analysis system. The HIIT and CON70 elicited higher cardiorespiratory responses compared to CON50 with no differences between them (p > 0.05). In HIIT and CON70, patients exercised longer at >80% and >90% VO2peak. The completion rate was 100% for the three protocols. Not any adverse events were observed in either protocol. Both HIIT and CON70 elicited a stronger physiological stimulus and required shorter time than CON50. Both HIIT and CON70 also induced comparable hemodynamic responses and ventilatory demand.

12.
World J Transplant ; 11(11): 466-479, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34868897

ABSTRACT

Heart transplantation remains the gold standard in the treatment of end-stage heart failure (HF). Heart transplantation patients present lower exercise capacity due to cardiovascular and musculoskeletal alterations leading thus to poor quality of life and reduction in the ability of daily self-service. Impaired vascular function and diastolic dysfunction cause lower cardiac output while decreased skeletal muscle oxidative fibers, enzymes and capillarity cause arteriovenous oxygen difference, leading thus to decreased peak oxygen uptake in heart transplant recipients. Exercise training improves exercise capacity, cardiac and vascular endothelial function in heart transplant recipients. Pre-rehabilitation regular aerobic or combined exercise is beneficial for patients with end-stage HF awaiting heart transplantation in order to maintain a higher fitness level and reduce complications afterwards like intensive care unit acquired weakness or cardiac cachexia. All hospitalized patients after heart transplantation should be referred to early mobilization of skeletal muscles through kinesiotherapy of the upper and lower limbs and respiratory physiotherapy in order to prevent infections of the respiratory system prior to hospital discharge. Moreover, all heart transplant recipients after hospital discharge who have not already participated in an early cardiac rehabilitation program should be referred to a rehabilitation center by their health care provider. Although high intensity interval training seems to have more benefits than moderate intensity continuous training, especially in stable transplant patients, individualized training based on the abilities and needs of each patient still remains the most appropriate approach. Cardiac rehabilitation appears to be safe in heart transplant patients. However, long-term follow-up data is incomplete and, therefore, further high quality and adequately-powered studies are needed to demonstrate the long-term benefits of exercise training in this population.

13.
World J Cardiol ; 13(9): 514-525, 2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34621496

ABSTRACT

BACKGROUND: Chronic heart failure (CHF) is a complex syndrome characterized by a progressive reduction of the left ventricular (LV) contractility, low exercise tolerance, and increased mortality and morbidity. Diastolic dysfunction (DD) of the LV, is a keystone in the pathophysiology of CHF and plays a major role in the progression of most cardiac diseases. Also, it is well estimated that exercise training induces several beneficial effects on patients with CHF. AIM: To evaluate the impact of a cardiac rehabilitation program on the DD and LV ejection fraction (EF) in patients with CHF. METHODS: Thirty-two stable patients with CHF (age: 56 ± 10 years, EF: 32% ± 8%, 88% men) participated in an exercise rehabilitation program. They were randomly assigned to aerobic exercise (AER) or combined aerobic and strength training (COM), based on age and peak oxygen uptake, as stratified randomization criteria. Before and after the program, they underwent a symptom-limited maximal cardiopulmonary exercise testing (CPET) and serial echocardiography evaluation to evaluate peak oxygen uptake (VO2peak), peak workload (Wpeak), DD grade, right ventricular systolic pressure (RVSP), and EF. RESULTS: The whole cohort improved VO2peak, and Wpeak, as well as DD grade (P < 0.05). Overall, 9 patients (28.1%) improved DD grade, while 23 (71.9%) remained at the same DD grade; this was a significant difference, considering DD grade at baseline (P < 0.05). In addition, the whole cohort improved RVSP and EF (P < 0.05). Not any between-group differences were observed in the variables assessed (P > 0.05). CONCLUSION: Exercise rehabilitation improves indices of diastolic and systolic dysfunction. Exercise protocol was not observed to affect outcomes. These results need to be further investigated in larger samples.

14.
Cells ; 10(8)2021 07 28.
Article in English | MEDLINE | ID: mdl-34440684

ABSTRACT

Peripheral myopathy consists of a hallmark of heart failure (HF). Exercise enhanced skeletal muscle angiogenesis, and thus, it can be further beneficial towards the HF-induced myopathy. However, there is limited evidence regarding the exercise type that elicits optimum angiogenic responses of skeletal muscle in HF patients. This study aimed to (a) compare the effects of a high-intensity-interval-training (HIIT) or combined HIIT with strength training (COM) exercise protocol on the expression of angiogenesis-related factors in skeletal muscle of HF patients, and (b) examine the potential associations between the expression of those genes and capillarization in the trained muscles. Thirteen male patients with chronic HF (age: 51 ± 13 y; BMI: 27 ± 4 kg/m2) were randomly assigned to a 3-month exercise program that consisted of either HIIT (N = 6) or COM training (N = 7). Vastus lateralis muscle biopsies were performed pre- and post-training. RT-PCR was used to quantify the fold changes in mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR-2), hypoxia-inducible factor 1 alpha (HIF-1α), angiopoietin 1 (Ang-1), angiopoietin 2 (Ang-2), angiopoietin receptor (Tie2), and matrix metallopeptidase 9 (MMP-9), and immunohistochemistry to assess capillarization in skeletal muscle post-training. There was an overall increase in the expression levels of VEGF, VEGFR-2, HIF-1α, Ang2, and MMP9 post-training, while these changes were not different among groups. Changes in capillary-to-fibre ratio were found to be strongly associated with Tie2 and HIF-1α expression. This was the first study demonstrating that both HIIT and combined HIIT with strength training enhanced similarly the expression profile of angiogenic factors in skeletal muscle of HF patients, possibly driving the angiogenic program in the trained muscles, although those gene expression increases were found to be only partially related with muscle capillarization.


Subject(s)
Exercise , Heart Failure/genetics , Muscle, Skeletal/metabolism , Adult , Capillaries/physiology , Chronic Disease , Heart Failure/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Middle Aged , Muscle Stretching Exercises , Muscle, Skeletal/pathology , RNA, Messenger/metabolism , Up-Regulation , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
15.
Int J Cardiol ; 341: 88-95, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34339767

ABSTRACT

INTRODUCTION: Acute exercise and exercise training may confer epigenetic modifications in healthy subjects. Epigenetic effects after exercise have been showed in patients with cardiovascular disease. The aim of this systematic review was to summarize the evidence from available clinical trials that study epigenetic adaptations after exercise in patients with cardiovascular disease. METHODS: The search strategy was performed in PubMed and CENTRAL databases on articles published until September 2020. Studies with titles and abstracts relevant to exercise epigenetic modification applied to cardiovascular patients were fully examined. Inclusion and exclusion criteria were utilized for studies screening. Quality assessment with PEDro scale and evaluation by two independent reviewers was performed. RESULTS: Of the 1714 articles retrieved, 88 articles were assessed for eligibility criteria and 8 articles matched our search criteria and finally included in the systematic analysis. The acute exercise epigenetic (miRNAs) effects were assessed in three studies and the chronic exercise training effects (miRNAs and DNA methylation) in six studies. The results have shown that there is possibly an acute significant exercise effect on epigenetic targets which is more evident after chronic exercise training. CONCLUSIONS: By the present systematic review, we provide preliminary evidence of beneficial epigenetic adaptations following acute and chronic exercise in patients with cardiovascular disease. More controlled studies are needed to confirm such evidence.


Subject(s)
Cardiovascular Diseases , Adaptation, Physiological , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Epigenesis, Genetic , Exercise , Exercise Therapy , Humans
16.
Int J Cardiol Heart Vasc ; 32: 100702, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33392386

ABSTRACT

BACKGROUND: Vascular endothelial dysfunction is an underlying pathophysiological feature of chronic heart failure (CHF). Endothelial progenitor cells (EPCs) are also impaired. The purpose of the study was to assess the effect of a cardiac rehabilitation (CR) program on the increase of EPCs at rest and on the acute response after maximal exercise in patients with CHF and investigate whether there were differences between two exercise training protocols and patients of NYHA II and III classes. METHODS: Forty-four patients with stable CHF enrolled in a 36-session CR program and were randomized in one training protocol; either high-intensity interval training (HIIT) or HIIT combined with muscle strength (COM). All patients underwent maximum cardiopulmonary exercise testing (CPET) before and after the CR program and venous blood was drawn before and after each CPET. Five endothelial cellular populations, expressed as cells/106 enucleated cells, were quantified by flow cytometry. RESULTS: An increase in all endothelial cellular populations at rest was observed after the CR program (p < 0.01). The acute response after maximum exercise increased in 4 out of 5 endothelial cellular populations after rehabilitation. Although there was increase in EPCs at rest and the acute response after rehabilitation in each exercise training group and each NYHA class, there were no differences between HIIT and COM groups or NYHA II and NYHA III classes (p > 0.05). CONCLUSIONS: A 36-session CR program increases the acute response after maximum CPET and stimulates the long-term mobilization of EPCs at rest in patients with CHF. These benefits seem to be similar between HIIT and COM exercise training protocols and between patients of different functional classes.

19.
World J Cardiol ; 12(11): 526-539, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33312438

ABSTRACT

BACKGROUND: Vascular endothelial dysfunction is an underlying pathophysiological feature of chronic heart failure (CHF). Patients with CHF are characterized by impaired vasodilation and inflammation of the vascular endothelium. They also have low levels of endothelial progenitor cells (EPCs). EPCs are bone marrow derived cells involved in endothelium regeneration, homeostasis, and neovascularization. Exercise has been shown to improve vasodilation and stimulate the mobilization of EPCs in healthy people and patients with cardiovascular comorbidities. However, the effects of exercise on EPCs in different stages of CHF remain under investigation. AIM: To evaluate the effect of a symptom-limited maximal cardiopulmonary exercise testing (CPET) on EPCs in CHF patients of different severity. METHODS: Forty-nine consecutive patients (41 males) with stable CHF [mean age (years): 56 ± 10, ejection fraction (EF, %): 32 ± 8, peak oxygen uptake (VO2, mL/kg/min): 18.1 ± 4.4] underwent a CPET on a cycle ergometer. Venous blood was sampled before and after CPET. Five circulating endothelial populations were quantified by flow cytometry: Three subgroups of EPCs [CD34+/CD45-/CD133+, CD34+/CD45-/CD133+/VEGFR2 and CD34+/CD133+/vascular endothelial growth factor receptor 2 (VEGFR2)] and two subgroups of circulating endothelial cells (CD34+/CD45-/CD133- and CD34+/CD45-/CD133-/VEGFR2). Patients were divided in two groups of severity according to the median value of peak VO2 (18.0 mL/kg/min), predicted peak VO2 (65.5%), ventilation/carbon dioxide output slope (32.5) and EF (reduced and mid-ranged EF). EPCs values are expressed as median (25th-75th percentiles) in cells/106 enucleated cells. RESULTS: Patients with lower peak VO2 increased the mobilization of CD34+/CD45-/CD133+ [pre CPET: 60 (25-76) vs post CPET: 90 (70-103) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133+/VEGFR2 [pre CPET: 1 (1-4) vs post CPET: 5 (3-8) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133- [pre CPET: 186 (141-361) vs post CPET: 488 (247-658) cells/106 enucleated cells, P < 0.001] and CD34+/CD45-/CD133-/VEGFR2 [pre CPET: 2 (1-2) vs post CPET: 3 (2-5) cells/106 enucleated cells, P < 0.001], while patients with higher VO2 increased the mobilization of CD34+/CD45-/CD133+ [pre CPET: 42 (19-73) vs post CPET: 90 (39-118) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133+/VEGFR2 [pre CPET: 2 (1-3) vs post CPET: 6 (3-9) cells/106 enucleated cells, P < 0.001], CD34+/CD133+/VEGFR2 [pre CPET: 10 (7-18) vs post CPET: 14 (10-19) cells/106 enucleated cells, P < 0.01], CD34+/CD45-/CD133- [pre CPET: 218 (158-247) vs post CPET: 311 (254-569) cells/106 enucleated cells, P < 0.001] and CD34+/CD45-/CD133-/VEGFR2 [pre CPET: 1 (1-2) vs post CPET: 4 (2-6) cells/106 enucleated cells, P < 0.001]. A similar increase in the mobilization of at least four out of five cellular populations was observed after maximal exercise within each severity group regarding predicted peak, ventilation/carbon dioxide output slope and EF as well (P < 0.05). However, there were no statistically significant differences in the mobilization of endothelial cellular populations between severity groups in each comparison (P > 0.05). CONCLUSION: Our study has shown an increased EPCs and circulating endothelial cells mobilization after maximal exercise in CHF patients, but this increase was not associated with syndrome severity. Further investigation, however, is needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...