Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biol Int ; 2015 Jan 24.
Article in English | MEDLINE | ID: mdl-25644206

ABSTRACT

Few available data on the genomic-somatic evolution in breast cancer create limitation to provide the appropriate clinical managements. As an example, human subtelomeres (ST) are diverse-prone and variable targets. STs, as hot spots, have positive and negative impacts on the status of health and malady. We showed higher subtelomere signal copy number (SCN) of specific chromosomes in genomics than in auxiliary lymph node (ALN). Dissimilarity of signal intensity (SI) is found for all chromosomes. Significantly higher SI in genomics than in ALN cells were specified as chromosomes 5, 6, 9-12, 16-19 for weak; 1, 5-9, 19, X for medium; and 2, 5, 9, 10, 16, 18 for strong SI. For lacking, and presence of one and two SCNs; p/q ratio reflected differences for all chromosomes; but, 2, 3, 5, 7, 8, 10, 16, 18, 20, and X chromosomes were involved for three SCN. Chromosomes 1, 4, 9, 12, 17-19 lacked three SCN in ALN and lymphocytes. Weak SI ratio was higher in p- than in q-arm in majority of chromosomes. Manner of evolution and diversity in p- and q-arms is expressive of a novel definition as two diverse domains with a personalized insight. These data have been accompanied by periodic charts as ST array profiles which provide specific and individualized pattern in breast neoplasm. Such profiling at genomics level could be considered as a prediction through the patients' life. Moreover, subtelomere territory by interacting with protein expression of Ki67, cyclin D1, and cyclin E; and molecular targets including telomere length at genomics and somatic level provides package of information to bridge cancer cell biology to the cancer clinic as "puzzling paradigm."

2.
Cell J ; 14(1): 19-24, 2012.
Article in English | MEDLINE | ID: mdl-23626933

ABSTRACT

OBJECTIVE: Breast cancer is one of the most common malignancies in women worldwide. It is caused by a number of genetic and epigenetic factors. Aberrant hypermethylation of the promoter regions in specific genes is a key event in the formation and progression of breast cancers as well as the DBC2 gene, as a tumor suppressor gene. Different studies show that the DBC2 gene is inactivated through epigenetic mechanisms such as methylation in its promoter region. In this study, authors have tried to analyze methylation status in the promoter region of DBC2 gene in affected women and healthy controls. MATERIALS AND METHODS: In this experimental study, we evaluated the methylation status of DBC2 gene with nested methylation-specific PCR (MSPCR) using specific methylated and unmethylated primer sets, in three separate PCR reactions. We used 50 tissue and blood samples of patients with breast cancer, 5 normal tissues and also 30 normal blood samples. Results were evaluated by the Mann-Whitney test, SPSS 16.0 statistical software. RESULTS: Nested MSPCR results demonstrated that the frequency of the DBC2 promoter region methylation status in tumor and blood samples of the affected patients was significantly higher than that of the corresponding normal controls. CONCLUSION: DBC2 gene inactivation by methylation of CpG islands in the promoter region probably is a crucial step in the process of cell proliferation and susceptibility to different cancers, including breast cancer. Our study provides new evidence that aberrant methylation of the DBC2 gene is involved in the tumorigenesis of breast cancer. DNA methylation in this gene is proven to be a potential marker for tumor diagnosis and prognosis, as well as a novel therapeutic target.

SELECTION OF CITATIONS
SEARCH DETAIL