Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793320

ABSTRACT

This work presents results on laser-induced surface structuring of AlN ceramic and its application in Surface-Enhanced Raman Spectroscopy (SERS). The laser processing is performed by nanosecond pulses in air and vacuum. Depending on the processing conditions, different surface morphology can be obtained. The ablation process is realized by ceramic decomposition as the formation of an aluminium layer is detected. The efficiency of the fabricated structures as active substrates in SERS is estimated by the ability of the detection of ammonium nitrate (NH4NO3). It is conducted for Raman spectrometer systems that operate at wavelengths of 514 and 785 nm where the most common commercial systems work. The obtained structures contribute to enhancement of the Raman signal at both wavelengths, as the efficiency is higher for excitation at 514 nm. The limit of detection (LOD) of ammonium nitrate is estimated to be below the maximum allowed value in drinking water. The analysis of the obtained results was based on the calculations of the near field enhancement at different conditions based on Finite Difference Time Domain simulation and the extinction spectra calculations based on Generalized Mie scattering theory. The structures considered in these simulations were taken from the SEM images of the real samples. The oxidation issue of the ablated surface was studied by X-ray photoelectron spectroscopy. The presented results indicated that laser structuring of AlN ceramics is a way for fabrication of Al structures with specific near-field properties that can be used for the detection of substances with high social impact.

2.
ACS Nano ; 18(14): 10165-10183, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38533789

ABSTRACT

In this study, Ti3C2Tx underwent laser treatment to reshape it, resulting in the formation of a TiO2/Ti3C2Tx heterojunction. The interaction with laser light induced the formation of spherical TiO2 composed of an anatase-rutile phase on the Ti3C2Tx surface. Such a heterostructure was loaded over a titania nanotube (TNT) layer, and the surface area was enhanced through immersion in a TiCl4 solution followed by thermal treatment. Consequently, the photon-to-electron conversion efficiency exhibits a 10-fold increase as compared to bare TNT. Moreover, for the sample produced with optimized conditions, five times higher photoactivity is observed in comparison to bare TNT. It was shown that under visible light irradiation the most photoactive heterojunction based on the tubular layer reveals a substantial drop in the charge transfer resistance of about 32% with respect to the dark condition. This can be attributed to the narrower band gaps of the modified material and improvement of the separation efficiency of the photogenerated electron-hole pairs. Overall results suggest that this investigation underscores TiO2/Ti3C2Tx as a promising noble-metal-free material that enhances both the electrochemical and photoelectrochemical performances of electrode materials based on TNT that can be further used in light-harvesting applications.

3.
Beilstein J Nanotechnol ; 15: 57-70, 2024.
Article in English | MEDLINE | ID: mdl-38229679

ABSTRACT

In this work, a strategy for one-stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo2O4 (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed that the added particles were incorporated and, in the case of a higher concentration of cCB particles, also bound to the surface of the structure of the hydrogel matrix. The produced composite materials were tested in terms of their electrical properties, showing that an increase in the concentration of conductive particles in the hydrogel structure translates into a lowering of the impedance modulus and an increase in the double-layer capacitance of the electrode. This, in turn, resulted in a higher catalytic activity of the electrode in the oxygen evolution reaction. The use of a hydrogel as a matrix to suspend the catalyst particles, and thus increase their availability through the electrolyte, seems to be an interesting and promising application approach.

4.
J Biomed Mater Res B Appl Biomater ; 112(1): e35332, 2024 01.
Article in English | MEDLINE | ID: mdl-37728122

ABSTRACT

The development of novel implants subjected to surface modification to achieve high osteointegration properties at simultaneous antimicrobial activity is a highly current problem. This study involved different surface treatments of titanium surface, mainly by electrochemical oxidation to produce a nanotubular oxide layer (TNTs), a subsequent electrochemical reduction of silver nitrate and decoration of a nanotubular surface with silver nanoparticles (AgNPs), and finally electrophoretic deposition (EPD) of a composite of chitosan (CS) and either polymethacrylate-based copolymer Eudragit E 100 (EE100) or poly(4-vinylpyridine) (P4VP) coating. The effects of each stage of this multi-step modification were examined in terms of morphology, roughness, wettability, corrosion resistance, coating-substrate adhesion, antibacterial properties, and osteoblast cell adhesion and proliferation. The results showed that the titanium surface formed nanotubes (inner diameter of 97 ± 12 nm, length of 342 ± 36 nm) subsequently covered with silver nanoparticles (with a diameter of 88 ± 8 nm). Further, the silver-decorated nanotubes were tightly coated with biopolymer films. Most of the applied modifications increased both the roughness and the surface contact angle of the samples. The deposition of biopolymer coatings resulted in reduced burst release of silver. The coated samples revealed potent antimicrobial activity against both Gram-positive and Gram-negative bacteria. Total elimination (99.9%) of E. coli was recorded for a sample with CS/P4VP coating. Cytotoxicity results using hFOB 1.19, a human osteoblast cell line, showed that after 3 days the tested modifications did not affect the cellular growth according to the titanium control. The proposed innovative multilayer antibacterial coatings can be successful for titanium implants as effective postoperative anti-inflammation protection.


Subject(s)
Chitosan , Metal Nanoparticles , Nanotubes , Polymethacrylic Acids , Polyvinyls , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Titanium/pharmacology , Titanium/chemistry , Corrosion , Escherichia coli , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Silver/pharmacology , Nanotubes/chemistry , Surface Properties
5.
ACS Appl Mater Interfaces ; 15(48): 56511-56525, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37990405

ABSTRACT

A series of facet-engineered TiO2/BaFe12O19 composites were synthesized through hydrothermal growth of both phases and subsequent deposition of the different, faceted TiO2 nanoparticles onto BaFe12O19 microplates. The well-defined geometry of the composite and uniaxial magnetic anisotropy of the ferrite allowed alternate interfaces between both phases and fixed the orientation between the TiO2 crystal structure and the remanent magnetic field within BaFe12O19. The morphology and crystal structure of the composites were confirmed by a combination of scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses together with the detailed study of BaFe12O19 electronic and magnetic properties. The photocatalytic activity and magnetic field effect were studied in the reaction of phenol degradation for TiO2/BaFe12O19 and composites of BaFe12O19 covered with a SiO2 protective layer and TiO2. The observed differences in phenol degradation are associated with electron transfer and the contribution of the magnetic field. All obtained magnetic composite materials can be easily separated in an external magnetic field, with efficiencies exceeding 95%, and recycled without significant loss of photocatalytic activity. The highest activity was observed for the composite of BaFe12O19 with TiO2 exposing {1 0 1} facets. However, to prevent electron transfer within the composite structure, this photocatalyst material was additionally coated with a protective SiO2 layer. Furthermore, TiO2 exposing {1 0 0} facets exhibited significant synergy with the BaFe12O19 magnetic field, leading to 2 times higher photocatalytic activity when ferrite was magnetized before the process. The photoluminescence emission study suggests that for this particular combination, the built-in magnetic field of the ferrite suppressed the recombination of the photogenerated charge carriers. Ultimately, possible effects of complex electro/magnetic interactions within the magnetic photocatalyst are shown and discussed for the first time, including the anisotropic properties of both phases.

6.
Materials (Basel) ; 16(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37048866

ABSTRACT

This work presents pulsed UV laser treatment (355 nm, 2 Hz) of TiO2 nanotubes decorated with chromium oxides. The modification was performed in a system equipped with a beam homogenizer, and during the irradiation, the samples were mounted onto the moving motorized table. In such a system, both precisely selected areas and any large area of the sample can be modified. Photoelectrochemical tests revealed photoresponse of laser-treated samples up to 1.37- and 18-fold under the illumination with ultraviolet-visible and visible light, respectively, in comparison to bare titania. Optimal beam energy fluence regarding sample photoresponse has been established. Scanning electron microscopy images, X-ray diffraction patterns, along with Raman and X-ray photoelectron spectra, suggest that the enhanced photoresponse results from changes solely induced in the layer of chromium oxides. It is believed that the results of the present work will contribute to a wider interest in laser modification of semiconductors exhibiting improved photoelectrochemical activity.

7.
Beilstein J Nanotechnol ; 14: 420-433, 2023.
Article in English | MEDLINE | ID: mdl-37025365

ABSTRACT

In this work, the specific role of the addition of graphene oxide (GO) to state-of-the-art nickel-iron (NiFe) and cobalt-nickel-iron (CoNiFe) mixed oxides/hydroxides towards the oxygen evolution reaction (OER) is investigated. Morphology, structure, and OER catalytic activity of the catalysts with and without GO were studied. The catalysts were fabricated via a two-step electrodeposition. The first step included the deposition of GO flakes, which, in the second step, were reduced during the simultaneous deposition of NiFe or CoNiFe. As a result, NiFe-GO and CoNiFe-GO were fabricated without any additives directly on the nickel foam substrate. A significant improvement of the OER activity was observed after combining NiFe with GO (OER overpotential η(10 mA·cm-2): 210 mV) compared to NiFe (η: 235 mV) and GO (η: 320 mV) alone. A different OER activity was observed for CoNiFe-GO. Here, the overall catalytic activity (η: 230 mV) increased compared to GO alone. However, it was reduced in comparison to CoNiFe (η: 224 mV). The latter was associated with the change in the morphology and structure of the catalysts. Further OER studies showed that each of the catalysts specifically influenced the process. The improvement in the OER by NiFe-GO results mainly from the structure of NiFe and the electroactive surface area of GO.

8.
J Dairy Res ; : 1-5, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36694366

ABSTRACT

This research paper addresses the hypothesis that powdered milk may contain amyloid fibrils. Amyloids are fibrillar aggregates of proteins. Up to this time, research on the presence of amyloids in food products are scarce. To check the hypothesis we performed thioflavin T fluorescence assay, X-ray powder diffraction, atomic force microscopy and fluorescence microscopy imaging. Our preliminary results show that commercially available milks contain fibrils that have features characteristic to amyloids. The obtained results can be interpreted in two opposite ways. The presence of amyloids could be considered as a hazard due to the fact that food products may induce amyloid related diseases. On the other hand, the presence of amyloids in traditionally consumed foodstuffs could serve as proof that fibrils of food proteins do not pose a threat for consumers.

9.
Molecules ; 29(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38202776

ABSTRACT

The subjects of this research are the burial clothes of Polish King Sigismund III Vasa and his wife Constance, which were woven and embroidered with silk and metal threads. Fragments of the textiles underwent spectroscopic, spectrometric, and thermogravimetric analyses. The hydrofluoric acid extraction method was improved to isolate various classes of dyes from the textile samples that had direct contact with human remains. High-performance liquid chromatography, coupled with diode array and tandem mass spectrometry detectors with electrospray ionization (HPLC-DAD-ESI-MS/MS) facilitated the detection and identification of colorants present in the textiles. Cochineal, indigo-, madder-, orchil-, and tannin-producing plants were identified as the sources of dyes used. Scanning electron microscopy with an energy-dispersive X-ray detector (SEM-EDS) was employed to identify and characterize the silk fibers and mordants and the metal threads. The presence of iron, aluminum, sodium, and calcium in the silk threads suggests their potential use as mordants. The analysis of the metal threads revealed that most of them were made from flattened gilded silver wire, with only a few being cut from a sheet of metal. Typical degradation mechanisms of metal threads were shown, resulting from both burial environment and earlier manufacturing process, and the use of the textiles in clothing, i.e., a significant loss of the gold layer was observed in most of silver gilt threads, caused by abrasion and delamination. The results of the thermal analysis confirmed the presence of silk and silver threads in the examined textiles.

10.
Front Public Health ; 10: 1063769, 2022.
Article in English | MEDLINE | ID: mdl-36466521

ABSTRACT

In this article we present results of our follow-up studies of samples of watch glass obtained and examined within a framework of international intercomparison dosimetry project RENEB ILC 2021. We present three methods of dose reconstruction based on EPR measurements of these samples: calibration method (CM), added dose method (ADM) and added dose&heating method (ADHM). The study showed that the three methods of dose reconstruction gave reliable and similar results in 0.5-6.0 Gy dose range, with accuracy better than 10%. The ADHM is the only one applicable in a real scenario, when sample-specific background spectrum is not available; therefore, a positive verification of this method is important for future use of EPR dosimetry in glass in potential radiation accidents.


Subject(s)
Film Dosimetry , Retrospective Studies
11.
Chemosphere ; 308(Pt 1): 136191, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36037953

ABSTRACT

In the present study, a hybrid photocatalyst of Zn/Ti layered double hydroxide (LDH) coupled with MXene - Ti3C2 was synthesized for the first time and applied in photocatalytic degradation of acetaminophen and ibuprofen, two commonly present in the natural environment and prone to accumulate in the aquatic ecosystem pharmaceuticals. The effect of MXene content (0.5 wt%, 2.5 wt%, and 5 wt%) on the photocatalytic activity of LDH/MXene composite was investigated. The composite of LDH/MXene containing 2.5 wt% of MXene revealed the highest photocatalytic activity in the degradation of acetaminophen (100% within 40 min) and ibuprofen (99.7% within 60 min). Furthermore, an improvement in acetaminophen and ibuprofen mineralization was observed for the composite material. Meanwhile, the introduction of interfering ions (Na+, Ca2+, Mg2+, Cl-, SO42-) in the model seawater did not affect the removal efficiency of both pharmaceuticals. The photocatalytic experiment performed in the four subsequent cycles, as well as FTIR, TEM, and XPS analyses after the photodegradation process confirmed the excellent stability and reusability of the prepared composite material. In order to evaluate the effect of various reactive oxidizing species (ROS) on the photocatalytic process, the trapping experiment was applied. It was noticed that •O2- had the main contribution in photocatalytic degradation of acetaminophen, while •OH and h+ mainly affected the degradation of ibuprofen. Finally, based on the results of Mott Schottky analysis, bandgap calculation, and ROS trapping experiment, the possible mechanism for pharmaceuticals degradation was proposed. This research illustrates the feasibility and novelty of the treatment of pharmaceuticals by LDH/MXene composites, implying that MXene plays a significant role in the electron-hole separation and thus high photocatalytic activity.


Subject(s)
Ibuprofen , Titanium , Acetaminophen , Catalysis , Ecosystem , Hydroxides , Pharmaceutical Preparations , Reactive Oxygen Species , Zinc
12.
Biomater Adv ; 138: 212950, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35913239

ABSTRACT

To provide antibacterial properties, the titanium samples were subjected to electrochemical oxidation in the fluoride-containing diethylene glycol-based electrolyte to create a titanium oxide nanotubular surface. Afterward, the surface was covered by sputtering with silver 5 nm film, and the tops of the nanotubes were capped using laser treatment, resulting in an appearance of silver nanoparticles (AgNPs) of around 30 nm in diameter on such a modified surface. To ensure a controlled release of the bactericidal substance, the samples were additionally coated with a pH-sensitive chitosan/Eudragit 100 coating, also exhibiting bactericidal properties. The modified titanium samples were characterized using SEM, EDS, AFM, Raman, and XPS techniques. The wettability, corrosion properties, adhesion of the coating to the substrate, the release of AgNPs into solutions simulating body fluids at different pH, and antibacterial properties were further investigated. The obtained composite coatings were hydrophilic, adjacent to the surface, and corrosion-resistant. An increase in the amount of silver released as ions or metallic particles into a simulated body fluid solution at acidic pH was observed for modified samples with the biopolymer coating after three days of exposure avoiding burst effect. The proposed modification was effective against both Gram-positive and Gram-negative bacteria.


Subject(s)
Chitosan , Metal Nanoparticles , Nanotubes , Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Coated Materials, Biocompatible/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Lasers , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Polymers , Polymethacrylic Acids , Silver/pharmacology , Titanium/pharmacology
13.
Materials (Basel) ; 15(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35888478

ABSTRACT

Organic aggregates currently play a prominent role, mainly for their unique optoelectronic properties in the aggregated state. Such properties can be related to the aggregates' structure and the molecular packing mode. In the literature, we have well-established models of H and J aggregates defined based on the molecular exciton model. However, unconventional aggregates, the most unrecognized forms, have been generating interest among researchers recently. Within unconventional aggregation, aggregation-induced emission systems (AIE) are considered. In the present work, we discuss the effect of the forming of unconventional aggregation together with the change in dye concentration on the surface energy characteristics of the materials. All materials were prepared as hybrid biocompatible thin films where the matrix is TiO2 or TiO2/carbon nanowalls (CNWs) with the incorporated dye in the form of 1,8-diazafluoren-9-one (DFO). Using the time-resolved emission spectra and the determination of surface parameters from contact angle measurements, we indicated the correlation between the changes in such parameters and the concentration of DFO dye in two types of TiO2 and TiO2/CNW structures. To examine the propensity of DFO for aggregation, the internal energy of the dye was assessed in several aggregate structures using Quantum chemistry calculations. The results emphasize that DFO is an attractive structure in the design of new fluorophores due to its low molecular weight, the presence of a nitrogen atom that provides good coordination properties, and the ability to form hydrogen bonds. Our studies show that when using suitable matrices, i.e., rigid media, it forms the preferred forms of aggregates in the excited state, characterized by high emission efficiency in the band maximum of around 550 nm.

14.
ACS Nano ; 16(8): 13183-13198, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35868019

ABSTRACT

The importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls (BCNWs) with an electropolymerized polydopamine/polyzwitterion (PDA|PZ) coating revealing tunable mechanical and electrochemical properties. Zwitterions are codeposited with PDA and noncovalently incorporated into a structure. This approach causes a specific separation of the diffusion fields generated by each nanowall during electrochemical reactions, thus increasing the contribution of the steady-state currents in the amperometric response. This phenomenon has a profound effect on the sensing properties, leading to a 4-fold enhancement of the sensitivity (3.1 to 14.3 µA cm-2 µM-1) and a 5-fold decrease of the limit of detection (505 to 89 nM) in comparison to the pristine BCNWs. Moreover, as a result of the antifouling capabilities of the incorporated zwitterions, this enhancement is preserved in bovine serum albumin (BSA) with a high protein concentration. The presence of zwitterion facilitates the transport of dopamine in the direction of the electrode by intermolecular interactions such as cation-π and hydrogen bonds. On the other hand, polydopamine units attached to the surface form molecular pockets driven by hydrogen bonds and π-π interactions. As a result, the intermediate state of dopamine-analyte oxidation is stabilized, leading to the enhancement of the sensing properties.


Subject(s)
Carbon , Dopamine , Carbon/chemistry , Electrochemical Techniques , Electrodes , Neurotransmitter Agents
15.
Adv Med Sci ; 67(2): 269-282, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35841880

ABSTRACT

PURPOSE: Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. MATERIALS AND METHODS: Six Composite Porous Matrices (CPMs) based on polyurethane (PUR) in alliance with polylactide (PLAs) and poly(vinyl alcohol) (PVA) were prepared and analyzed using optical microscopy. Three different types of hydrogels and their Ciprofloxacin (Cipro) modified variants' ratios were prepared and analyzed using FTIR, SEM and EDX techniques. Six Hybrid Cipro-Releasing Hydrogel Wound Dressings (H-CRWDs) were also prepared and underwent short-term degradation, Cipro release, microbiology and cell viability measurements. RESULTS: Average porosity of CPMs was in the range of 69-81%. The pore size of the obtained CPMs was optimal for skin regeneration. Short-term degradation studies revealed degradability in physiological conditions regardless of sample type. A meaningful release was also observed even in short time (21.76 â€‹± â€‹0.64 â€‹µg/mL after 15 â€‹min). Microbiological tests showed visible inhibition zones. Cell viability tests proved that the obtained H-CRWDs were biocompatible (over 85% of cells). CONCLUSIONS: A promising hybrid wound dressing was labeled. Simple and cost-effective methods were used to obtain microbiologically active and biocompatible dressings. The results were of importance for the design and development of acceptable solutions in the management of chronic wounds of high potential for infection.


Subject(s)
Ciprofloxacin , Polyurethanes , Ciprofloxacin/pharmacology , Polyurethanes/pharmacology , Polyvinyl Alcohol/pharmacology , Wound Healing , Bandages , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Polymers/pharmacology
16.
Polymers (Basel) ; 14(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35631968

ABSTRACT

A very important method of reducing the amount of polymer waste in the environment is the introduction to the market of polymers susceptible to degradation under the influence of environmental factors. This paper presents the results of testing the susceptibility to degradation in soil of branched polyesterurethane (PUR) based on poly([R,S]-3-hydroxybutyrate) (R,S-PHB), modified with poly([D,L]-lactide) (PLA) and starch (St). Weight losses of samples and changes in surface morphology (SEM, OM and contact angle system) with simultaneously only slight changes in molecular weight (GPC), chemical structure (FTIR and 1HNMR) and thermal properties (DSC) indicate that these materials are subject to enzymatic degradation caused by the presence of microorganisms in the soil. Chemical modification of branched polyesterurethanes with R,S-PHB and their physical blending with small amounts of PLA and St resulted in a slow but progressive degradation of the samples.

17.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328447

ABSTRACT

Protein fibrillation leads to formation of amyloids-linear aggregates that are hallmarks of many serious diseases, including Alzheimer's and Parkinson's diseases. In this work, we investigate the fibrillation of a short peptide (K-peptide) from the amyloidogenic core of hen egg white lysozyme in the presence of dimethyl sulfoxide or urea. During the studies, a variety of spectroscopic methods were used: fluorescence spectroscopy and the Thioflavin T assay, circular dichroism, Fourier-transform infrared spectroscopy, optical density measurements, dynamic light scattering and intrinsic fluorescence. Additionally, the presence of amyloids was confirmed by atomic force microscopy. The obtained results show that the K-peptide is highly prone to form fibrillar aggregates. The measurements also confirm the weak impact of dimethyl sulfoxide on peptide fibrillation and distinct influence of urea. We believe that the K-peptide has higher amyloidogenic propensity than the whole protein, i.e., hen egg white lysozyme, most likely due to the lack of the first step of amyloidogenesis-partial unfolding of the native structure. Urea influences the second step of K-peptide amyloidogenesis, i.e., folding into amyloids.


Subject(s)
Muramidase , Urea , Amyloid/metabolism , Animals , Chickens/metabolism , Circular Dichroism , Dimethyl Sulfoxide/pharmacology , Muramidase/chemistry , Peptides , Urea/chemistry , Urea/pharmacology
18.
Nanotechnology ; 33(20)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35108692

ABSTRACT

Although hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste which is a huge challenge. In this work, the laser-based modification technique of the titania nanotubes containing sputtered transition metal species (Fe, Co, Ni, and Cu) was employed. The characteristics of the electrodes are provided both for the hydrogen and oxygen evolution reactions, where the influence of the laser treatment has been found to have the opposite effect. The structural and chemical analysis of the substrate material provides insight into pathways towards more efficient, low-temperature water splitting. Laser-assisted integration of transition metal with the tubular nanostructure results in the match-like structure where the metal species are accumulated at the head. The electrochemical data indicates a significant decrease in material resistance that leads to an overpotential of only +0.69 V at 10 mA cm-2for nickel-modified material.

19.
Materials (Basel) ; 15(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35057350

ABSTRACT

Due to the rising concentration of toxic nitrogen oxides (NOx) in the air, effective methods of NOx removal have been extensively studied recently. In the present study, the first developed WO3/S-doped g-C3N4 nanocomposite was synthesized using a facile method to remove NOx in air efficiently. The photocatalytic tests performed in a newly designed continuous-flow photoreactor with an LED array and online monitored NO2 and NO system allowed the investigation of photocatalyst layers at the pilot scale. The WO3/S-doped-g-C3N4 nanocomposite, as well as single components, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area analysis (BET), X-ray fluorescence spectroscopy (XRF), X-ray photoemission spectroscopy method (XPS), UV-vis diffuse reflectance spectroscopy (DR/UV-vis), and photoluminescence spectroscopy with charge carriers' lifetime measurements. All materials exhibited high efficiency in photocatalytic NO2 conversion, and 100% was reached in less than 5 min of illumination under simulated solar light. The effect of process parameters in the experimental setup together with WO3/S-doped g-C3N4 photocatalysts was studied in detail. Finally, the stability of the composite was tested in five subsequent cycles of photocatalytic degradation. The WO3/S-doped g-C3N4 was stable in time and did not undergo deactivation due to the blocking of active sites on the photocatalyst's surface.

20.
J Biomol Struct Dyn ; 40(23): 13346-13353, 2022.
Article in English | MEDLINE | ID: mdl-34623219

ABSTRACT

Communicated by Ramaswamy H. Sarma.


Subject(s)
Egg White , Muramidase , Animals , Chickens
SELECTION OF CITATIONS
SEARCH DETAIL
...