Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 21: 1523-1532, 2023.
Article in English | MEDLINE | ID: mdl-36851915

ABSTRACT

Regulatory networks structure and signaling pathways dynamics are uncovered in time- and resource consuming experimental work. However, it is increasingly supported by modeling, analytical and computational techniques as well as discrete mathematics and artificial intelligence applied to to extract knowledge from existing databases. This review is focused on mathematical modeling used to analyze dynamics and robustness of these networks. This paper presents a review of selected modeling methods that facilitate advances in molecular biology.

2.
Front Immunol ; 13: 947213, 2022.
Article in English | MEDLINE | ID: mdl-36238296

ABSTRACT

Immune cells fine tune their responses to infection and inflammatory cues. Here, using live-cell confocal microscopy and mathematical modelling, we investigate interferon-induced JAK-STAT signalling in innate immune macrophages. We demonstrate that transient exposure to IFN-γ stimulation induces a long-term desensitisation of STAT1 signalling and gene expression responses, revealing a dose- and time-dependent regulatory feedback that controls JAK-STAT responses upon re-exposure to stimulus. We show that IFN-α/ß1 elicit different level of desensitisation from IFN-γ, where cells refractory to IFN-α/ß1 are sensitive to IFN-γ, but not vice versa. We experimentally demonstrate that the underlying feedback mechanism involves regulation of STAT1 phosphorylation but is independent of new mRNA synthesis and cognate receptor expression. A new feedback model of the protein tyrosine phosphatase activity recapitulates experimental data and demonstrates JAK-STAT network's ability to decode relative changes of dose, timing, and type of temporal interferon stimulation. These findings reveal that STAT desensitisation renders cells with signalling memory of type I and II interferon stimulation, which in the future may improve administration of interferon therapy.


Subject(s)
Interferon-alpha , Protein-Tyrosine Kinases , Antiviral Agents , Feedback , Interferon-alpha/metabolism , Janus Kinases/metabolism , Protein Tyrosine Phosphatases/metabolism , Protein-Tyrosine Kinases/metabolism , RNA, Messenger , STAT Transcription Factors/metabolism , Transcription, Genetic
3.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743048

ABSTRACT

Mathematical modeling of signaling pathways and regulatory networks has been supporting experimental research for some time now. Sensitivity analysis, aimed at finding model parameters whose changes yield significantly altered cellular responses, is an important part of modeling work. However, sensitivity methods are often directly transplanted from analysis of technical systems, and thus, they may not serve the purposes of analysis of biological systems. This paper presents a novel sensitivity analysis method that is particularly suited to the task of searching for potential molecular drug targets in signaling pathways. Using two sample models of pathways, p53/Mdm2 regulatory module and IFN-ß-induced JAK/STAT signaling pathway, we show that the method leads to biologically relevant conclusions, identifying processes suitable for targeted pharmacological inhibition, represented by the reduction of kinetic parameter values. That, in turn, facilitates subsequent search for active drug components.


Subject(s)
Models, Biological , Signal Transduction , Kinetics , Signal Transduction/physiology
4.
Sci Rep ; 12(1): 1135, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064163

ABSTRACT

Intracellular processes are cascades of biochemical reactions, triggered in response to various types of stimuli. Mathematical models describing their dynamics have become increasingly popular in recent years, as tools supporting experimental work in analysis of pathways and regulatory networks. Not only do they provide insights into general properties of these systems, but also help in specific tasks, such as search for drug molecular targets or treatment protocols. Different tools and methods are used to model complex biological systems. In this work, we focus on ordinary differential equations (ODEs) and Petri nets. We consider specific methods of analysis of such models, i.e., sensitivity analysis (SA) and significance analysis. So far, they have been applied separately, with different goals. In this paper, we show that they can complement each other, combining the sensitivity of ODE models and the significance analysis of Petri nets. The former is used to find parameters, whose change results in the greatest quantitative and qualitative changes in the model response, while the latter is a structural analysis and allows indicating the most important subprocesses in terms of information flow in Petri net. Ultimately, both methods facilitate finding the essential processes in a given signaling pathway or regulatory network and may be used to support medical therapy development. In the paper, the use of dual modeling is illustrated with an example of ATM/p53/NF-[Formula: see text]B pathway. Each method was applied to analyze this system, resulting in finding different subsets of important processes that might be prospective targets for changing this system behavior. While some of the processes were indicated in each of the approaches, others were found by one method only and would be missed if only that method was applied. This leads to the conclusion about the complementarity of the methods under investigation. The dual modeling approach of comprehensive structural and parametric analysis yields results that would not be possible if these two modeling approaches were applied separately. The combined approach, proposed in this paper, facilitates finding not only key processes, with which significant parameters are associated, but also significant modules, corresponding to subsystems of regulatory networks. The results provide broader insight into therapy targets in diseases in which the natural control of intracellular processes is disturbed, leading to the development of more effective therapies in medicine.

5.
Cell Commun Signal ; 18(1): 77, 2020 05 24.
Article in English | MEDLINE | ID: mdl-32448393

ABSTRACT

BACKGROUND: Ability to adapt to temperature changes trough the Heat Shock Response (HSR) pathways is one of the most fundamental and clinically relevant cellular response systems. Heat Shock (HS) affects the signalling and gene expression responses of the Nuclear Factor κB (NF-κB) transcription factor, a critical regulator of proliferation and inflammation, however, our quantitative understanding of how cells sense and adapt to temperature changes is limited. METHODS: We used live-cell time-lapse microscopy and mathematical modelling to understand the signalling of the NF-κB system in the human MCF7 breast adenocarcinoma cells in response to pro-inflammatory Interleukin 1ß (IL1ß) and Tumour Necrosis Factor α (TNFα) cytokines, following exposure to a 37-43 °C range of physiological and clinical temperatures. RESULTS: We show that exposure to 43 °C 1 h HS inhibits the immediate NF-κB signalling response to TNFα and IL1ß stimulation although uptake of cytokines is not impaired. Within 4 h after HS treatment IL1ß-induced NF-κB responses return to normal levels, but the recovery of the TNFα-induced responses is still affected. Using siRNA knock-down of Heat Shock Factor 1 (HSF1) we show that this stimulus-specificity is conferred via the Inhibitory κB kinase (IKK) signalosome where HSF1-dependent feedback regulates TNFα, but not IL1ß-mediated IKK recovery post HS. Furthermore, we demonstrate that through the temperature-dependent denaturation and recovery of IKK, TNFα and IL1ß-mediated signalling exhibit different temperature sensitivity and adaptation to repeated HS when exposed to a 37-43 °C temperature range. Specifically, IL1ß-mediated NF-κB responses are more robust to temperature changes in comparison to those induced by TNFα treatment. CONCLUSIONS: We demonstrate that the kinetics of the NF-κB system following temperature stress is cytokine specific and exhibit differential adaptation to temperature changes. We propose that this differential temperature sensitivity is mediated via the IKK signalosome, which acts as a bona fide temperature sensor trough the HSR cross-talk. This novel quantitative understanding of NF-κB and HSR interactions is fundamentally important for the potential optimization of therapeutic hyperthermia protocols. Video Abstract.


Subject(s)
Gene Expression/drug effects , Heat-Shock Response , Inflammation/metabolism , Interleukin-1beta/pharmacology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Humans , MCF-7 Cells
6.
PLoS Comput Biol ; 14(4): e1006130, 2018 04.
Article in English | MEDLINE | ID: mdl-29708974

ABSTRACT

Elevated temperature induces the heat shock (HS) response, which modulates cell proliferation, apoptosis, the immune and inflammatory responses. However, specific mechanisms linking the HS response pathways to major cellular signaling systems are not fully understood. Here we used integrated computational and experimental approaches to quantitatively analyze the crosstalk mechanisms between the HS-response and a master regulator of inflammation, cell proliferation, and apoptosis the Nuclear Factor κB (NF-κB) system. We found that populations of human osteosarcoma cells, exposed to a clinically relevant 43°C HS had an attenuated NF-κB p65 response to Tumor Necrosis Factor α (TNFα) treatment. The degree of inhibition of the NF-κB response depended on the HS exposure time. Mathematical modeling of single cells indicated that individual crosstalk mechanisms differentially encode HS-mediated NF-κB responses while being consistent with the observed population-level responses. In particular "all-or-nothing" encoding mechanisms were involved in the HS-dependent regulation of the IKK activity and IκBα phosphorylation, while others involving transport were "analogue". In order to discriminate between these mechanisms, we used live-cell imaging of nuclear translocations of the NF-κB p65 subunit. The single cell responses exhibited "all-or-nothing" encoding. While most cells did not respond to TNFα stimulation after a 60 min HS, 27% showed responses similar to those not receiving HS. We further demonstrated experimentally and theoretically that the predicted inhibition of IKK activity was consistent with the observed HS-dependent depletion of the IKKα and IKKß subunits in whole cell lysates. However, a combination of "all-or-nothing" crosstalk mechanisms was required to completely recapitulate the single cell data. We postulate therefore that the heterogeneity of the single cell responses might be explained by the cell-intrinsic variability of HS-modulated IKK signaling. In summary, we show that high temperature modulates NF-κB responses in single cells in a complex and unintuitive manner, which needs to be considered in hyperthermia-based treatment strategies.


Subject(s)
Heat-Shock Response/physiology , Models, Biological , NF-kappa B/metabolism , Cell Line , Computational Biology , Computer Simulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , I-kappa B Kinase/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Single-Cell Analysis , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...