Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 861: 160440, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36436638

ABSTRACT

Electrochemical based approaches for the treatment of recalcitrant water borne pollutants are known to exhibit superior function in terms of efficiency and rate of treatment. Considering the stability of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are designated as forever chemicals, which generating from various industrial activities. PFAS are contaminating the environment in small concentrations, yet exhibit severe environmental and health impacts. Electro-oxidation (EO) is a recent development that treats PFAS, in which different reactive species generates at anode due to oxidative reaction and reductive reactions at the cathode. Compared to water and wastewater treatment methods those being implemented, electrochemical approaches demonstrate superior function against PFAS. EO completely mineralizes (almost 100 %) non-biodegradable organic matter and eliminate some of the inorganic species, which proven as a robust and versatile technology. Electrode materials, electrolyte concentration pH and the current density applying for electrochemical processes determine the treatment efficiency. EO along with electrocoagulation (EC) treats PFAS along with other pollutants from variety of industries showed highest degradation of 7.69 mmol/g of PFAS. Integrated approach with other processes was found to exhibit improved efficiency in treating PFAS using several electrodes boron-doped diamond (BDD), zinc, titanium and lead based with efficiency the range of 64 to 97 %.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Pollutants , Wastewater , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Electrodes , Water
2.
Water Sci Technol ; 86(6): 1527-1539, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36178821

ABSTRACT

Visible light active co-doped Cu-N/TiO2 photocatalyst was synthesized by the sol-gel method. The synthesized catalysts were characterized by X-ray diffraction (XRD), field-emission transmission electron microscope (FE-TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and UV-visible diffuse reflectance spectrophotometry (UV-vis DRS). The co-doping with Cu-N reduced the bandgap (∼2.83 eV) and extended the optical absorption range of TiO2 catalysts to the visible region. The incorporation of Cu and N on TiO2 lattice results in sub-conduction and valence band formation, which enhanced the photoactivity and electron-hole generation rate. The visible light activity of Cu-N/TiO2 was evaluated via photocatalytic degradation of bisphenol A (BPA) under blue LED illumination. The maximum BPA degradation of 42.7% was observed at 0.5 g L-1 catalyst dosage, initial pH of BPA solution = 8.2, and initial BPA concentration of 10 ppm. Further, a possible mechanism of photocatalytic degradation of BPA was also established.


Subject(s)
Nanoparticles , Titanium , Benzhydryl Compounds , Catalysis , Light , Phenols , Titanium/chemistry , X-Ray Diffraction
3.
Environ Res ; 205: 112463, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34856168

ABSTRACT

The electrochemical advanced oxidation processes (EAOPs) have received significant attention among the many other water and wastewater treatment technologies. However, achieving a desirable removal effect with a single technique is frequently difficult. Therefore, the integration of ultrasound technique with other processes such as electrocoagulation, electro-Fenton, and electrooxidation is a critical way to achieve effective organic pollutants decomposition from wastewater. This review paper is focused on ultrasound-assisted electrochemical (US/electrochemical) processes, so-called sonoelectrochemical processes of various organic pollutants. Emphasis was given to recently published articles for discussing the results and trends in this research area. The use of ultrasound and integration with electrochemical processes has a synergistic impact owing to the physical and chemical consequences of cavitation, resulting in enhancing the mineralization of organic pollutants. Various types of sonoelectrochemical reactors (batch and continuous) employed in the US/electrochemical processes were reviewed. In addition, the strategies to avoid passivation, enhanced generation of reactive oxygen species, and mixing effect are reviewed. Finally, concluding remarks and future perspectives on this research topic are also explored and recommended.


Subject(s)
Water Pollutants, Chemical , Water Purification , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods
4.
Environ Res ; 200: 111515, 2021 09.
Article in English | MEDLINE | ID: mdl-34129864

ABSTRACT

The presence of pharmaceutically active compounds in aquatic bodies is a global concern, and suitable treatment technologies are required. In this study, the efficacy of photocatalytic, sonocatalytic, and sonophotocatalytic oxidation processes for the degradation of amoxicillin (AMX) was investigated using visible light with N doped TiO2 (N-TiO2) nanoparticles as the catalyst and low-frequency ultrasound in a novel multifrequency reactor. The influence of different operational parameters on the extent of AMX degradation was studied. Sonophotocatalytic oxidation was found more efficient for AMX degradation when compared to photocatalysis or sonocatalysis alone, and may be due to the reduced bandgap of the catalyst, enhanced cavitation effect due to the presence of the solid catalyst, and improved mass transfer of pollutants. AMX degradation during sono, photo, and sonophotocatalytic oxidation processes was in good agreement with pseudo-first-order kinetics. Empirical kinetic models were also developed using multiple linear regression for predicting the degradation efficiency accounting for the operational parameters. Scavenger experiments suggested that •OH radicals largely contributed to AMX degradation, and a plausible mechanism for degradation was proposed. Further, possible degradation pathways for all three treatment processes are also proposed after identifying the degradation products.


Subject(s)
Amoxicillin , Nanoparticles , Catalysis , Light , Titanium
5.
Chemosphere ; 276: 130188, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33743419

ABSTRACT

An inadequate and inefficient performance ability of conventional methods to remove persistent organic pollutants urges the need of alternative or complementary advanced wastewater treatments methods to ensure the safer reuse of reclaimed water. Photoelectrochemical methods are emerging as promising options among other advanced oxidation processes because of the higher treatment efficiency achieved due to the synergistic effects of combined photochemical and electrolysis reactions. Synergistic effects of integrated photochemical, electrochemical and photoelectrochemical processes not only increase the hydroxyl radical production; an enhancement on the mineralization ability through various side reactions is also achieved. In this review, fundamental reaction mechanisms of different photoelectrochemical methods including photoelectrocatalysis, photo/solar electro-Fenton, photo anodic oxidation, photoelectroperoxone and photocatalytic fuel cell are discussed. Various integrated photochemical, electrochemical and photoelectrochemical processes and their synergistic effects are elaborated. Different reactor configurations along with the positioning of electrodes, photocatalysts and light source of the individual/combined photoelectrochemical treatment systems are discussed. Modified photoanode and cathode materials used in the photoelectrochemical reactors and their performance ability is presented. Photoelectrochemical treatment of real wastewater such as landfill leachate, oil mill, pharmaceutical, textile, and tannery wastewater are reviewed. Hydrogen production efficiency in the photoelectrochemical process is further elaborated. Cost and energy involved in these processes are briefed, but the applicability of photocatalytic fuel cells to reduce the electrical dependence is also summarised. Finally, the use of photoelectrochemical approaches as an alternative for treating soil washing effluents is currently discussed.


Subject(s)
Wastewater , Water Pollutants, Chemical , Electrodes , Hydrogen Peroxide , Oxidation-Reduction , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis
6.
Chemosphere ; 265: 129057, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33272667

ABSTRACT

Sulfate radical based advanced oxidation processes have been extensively studied for the degradation of environmental contaminants. Iron-based materials such as ferrous, ferric, ZVI, iron oxides, sulfides etc., and various natural iron minerals have been explored for activating persulfate to generate sulfate radicals. In this review, an overview of different iron activated persulfate systems and their application in the removal of organic pollutants and metals in water and soil are summarised. The chemistry behind the activation of persulfate by homogenous and heterogeneous iron-based materials with/without the assistance of electrochemical techniques are also discussed. Besides, the soil decontamination by iron persulfate system and a brief discussion on the ability of the persulfate system to reduce metals presence in wastewater are also summarised. Finally, future research prospects, believed to be useful for all researchers in this field, based on up to date research progress is also given.


Subject(s)
Iron , Water Pollutants, Chemical , Decontamination , Oxidation-Reduction , Soil , Sulfates , Water
7.
Water Sci Technol ; 80(11): 2047-2057, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32198323

ABSTRACT

This study investigates the solar photo-Fenton based decolorization of a cationic dye methylene blue (MB) at circumneutral pH conditions. Water-soluble Fe(III)-citrate complex was used as a source of Fe(II) during the reaction by ligand-to-metal charge transfer under solar irradiation, and consequently, for the production of hydroxyl radicals. Solar decolorization of methylene blue was studied in sunny as well as cloudy weather, and further optimized using response surface methodology and Box-Behnken statistical experimental design. In this model, Fe(III) dose, citrate ion dose, and initial pH of the solution were used as independent parameters, and percentage decolorization of MB was used as a response. Better decolorization of MB was observed in sunny weather as compared to cloudy weather. A particular combination of parameters, i.e. pH of 7, Fe(III) of 0.5 mM, and citrate ion concentration of 10 mM, was found to achieve 89.19% and 51.22% decolorization in sunny and in cloudy weather respectively, which were the optimum/near-optimum performances for these weather conditions. Hence the process initiated with these parameters may potentially achieve better performance than any other parameter combination in all weathers, although the absolute removal would still depend on incident solar irradiation.


Subject(s)
Ferric Compounds , Methylene Blue , Citrates , Citric Acid , Hydrogen Peroxide , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...