Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 14475, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660120

ABSTRACT

Intestinal parasitic infections (IPIs) caused by protozoan and helminth parasites are among the most common infections in humans in low-and-middle-income countries. IPIs affect not only the health status of a country, but also the economic sector. Over the last decade, pattern recognition and image processing techniques have been developed to automatically identify parasitic eggs in microscopic images. Existing identification techniques are still suffering from diagnosis errors and low sensitivity. Therefore, more accurate and faster solution is still required to recognize parasitic eggs and classify them into several categories. A novel Chula-ParasiteEgg dataset including 11,000 microscopic images proposed in ICIP2022 was utilized to train various methods such as convolutional neural network (CNN) based models and convolution and attention (CoAtNet) based models. The experiments conducted show high recognition performance of the proposed CoAtNet that was tuned with microscopic images of parasitic eggs. The CoAtNet produced an average accuracy of 93%, and an average F1 score of 93%. The finding opens door to integrate the proposed solution in automated parasitological diagnosis.


Subject(s)
Intestinal Diseases, Parasitic , Neural Networks, Computer , Parasites , Parasites/classification , Parasites/cytology , Parasites/growth & development , Datasets as Topic , Ovum/classification , Ovum/cytology , Microscopy , Humans , Intestinal Diseases, Parasitic/diagnosis , Intestinal Diseases, Parasitic/parasitology , Animals
3.
Sci Rep ; 12(1): 21896, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36535968

ABSTRACT

Space situational awareness (SSA) systems play a significant role in space navigation missions. One of the most essential tasks of this system is to recognize space objects such as spacecrafts and debris for various purposes including active debris removal, on-orbit servicing, and satellite formation. The complexity of object recognition in space is due to several sensing conditions, including the variety of object sizes with high contrast, low signal-to-noise ratio, noisy backgrounds, and several orbital scenarios. Existing methods have targeted the classification of images containing space objects with complex backgrounds using various convolutional neural networks. These methods sometimes lose attention on the objects in these images, which leads to misclassification and low accuracy. This paper proposes a decision fusion method that involves training an EfficientDet model with an EfficientNet-v2 backbone to detect space objects. Furthermore, the detected objects were augmented by blurring and by adding noise, and were then passed into the EfficientNet-B4 model for training. The decisions from both models were fused to find the final category among 11 categories. The experiments were conducted by utilizing a recently developed space object dataset (SPARK) generated from realistic space simulation environments. The dataset consists of 11 categories of objects with 150,000 RGB images and 150,000 depth images. The proposed object detection solution yielded superior performance and its feasibility for use in real-world SSA systems was demonstrated. Results show significant improvement in accuracy (94%), and performance metric (1.9223%) for object classification and in mean precision (78.45%) and mean recall (92.00%) for object detection.

5.
Sci Rep ; 12(1): 3924, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35273245

ABSTRACT

Recognition of space objects including spacecraft and debris is one of the main components in the space situational awareness (SSA) system. Various tasks such as satellite formation, on-orbit servicing, and active debris removal require object recognition to be done perfectly. The recognition task in actual space imagery is highly complex because the sensing conditions are largely diverse. The conditions include various backgrounds affected by noise, several orbital scenarios, high contrast, low signal-to-noise ratio, and various object sizes. To address the problem of space recognition, this paper proposes a multi-modal learning solution using various deep learning models. To extract features from RGB images that have spacecraft and debris, various convolutional neural network (CNN) based models such as ResNet, EfficientNet, and DenseNet were explored. Furthermore, RGB based vision transformer was demonstrated. Additionally, End-to-End CNN was used for classification of depth images. The final decision of the proposed solution combines the two decisions from RGB based and Depth-based models. The experiments were carried out using a novel dataset called SPARK which was generated under a realistic space simulation environment. The dataset includes various images with eleven categories, and it is divided into 150 k of RGB images and 150 k of depth images. The proposed combination of RGB based vision transformer and Depth-based End-to-End CNN showed higher performance and better results in terms of accuracy (85%), precision (86%), recall (85%), and F1 score (84%). Therefore, the proposed multi-modal deep learning is a good feasible solution to be utilized in real tasks of SSA system.

7.
Sensors (Basel) ; 21(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494254

ABSTRACT

Given the excessive foul language identified in audio and video files and the detrimental consequences to an individual's character and behaviour, content censorship is crucial to filter profanities from young viewers with higher exposure to uncensored content. Although manual detection and censorship were implemented, the methods proved tedious. Inevitably, misidentifications involving foul language owing to human weariness and the low performance in human visual systems concerning long screening time occurred. As such, this paper proposed an intelligent system for foul language censorship through a mechanized and strong detection method using advanced deep Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) through Long Short-Term Memory (LSTM) cells. Data on foul language were collected, annotated, augmented, and analysed for the development and evaluation of both CNN and RNN configurations. Hence, the results indicated the feasibility of the suggested systems by reporting a high volume of curse word identifications with only 2.53% to 5.92% of False Negative Rate (FNR). The proposed system outperformed state-of-the-art pre-trained neural networks on the novel foul language dataset and proved to reduce the computational cost with minimal trainable parameters.


Subject(s)
Language , Neural Networks, Computer , Humans , Memory, Long-Term , Recognition, Psychology
8.
J Med Syst ; 39(2): 5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25628161

ABSTRACT

The massive number of medical images produced by fluoroscopic and other conventional diagnostic imaging devices demand a considerable amount of space for data storage. This paper proposes an effective method for lossless compression of fluoroscopic images. The main contribution in this paper is the extraction of the regions of interest (ROI) in fluoroscopic images using appropriate shapes. The extracted ROI is then effectively compressed using customized correlation and the combination of Run Length and Huffman coding, to increase compression ratio. The experimental results achieved show that the proposed method is able to improve the compression ratio by 400 % as compared to that of traditional methods.


Subject(s)
Data Compression/methods , Esophagus/diagnostic imaging , Pharynx/diagnostic imaging , Algorithms , Fluoroscopy , Humans , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...