Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2343: 19-35, 2022.
Article in English | MEDLINE | ID: mdl-34473313

ABSTRACT

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing around the world, in association with the progressive elevation in overweight and obesity. The accumulation of lipids in NAFLD patients contributes to the development of insulin resistance, inflammation and oxidative stress in hepatocytes, and alteration of blood lipids and glycaemia. There are currently no effective pharmacological therapies for NAFLD, although lifestyle and dietary modifications targeting weight reduction are among the prevailing alternative approaches. For this reason, new approaches should be investigated. The natural polyphenol resveratrol represents a potential new treatment for management of NAFLD due to anti-inflammatory and antioxidant properties. Although preclinical trials have demonstrated promising results of resveratrol against NALFD, the lack of conclusive results creates the need for more trials with larger numbers of patients, longer time courses, and standardized protocols.


Subject(s)
Antioxidants , Non-alcoholic Fatty Liver Disease , Resveratrol , Antioxidants/pharmacology , Antioxidants/therapeutic use , Epigenesis, Genetic , Humans , Lipids , Non-alcoholic Fatty Liver Disease/drug therapy , Oxidative Stress , Resveratrol/pharmacology , Resveratrol/therapeutic use
2.
Front Oncol ; 12: 1092201, 2022.
Article in English | MEDLINE | ID: mdl-36686738

ABSTRACT

Introduction: Compared with breast cancer (BC) in women, BC in men is a rare disease with genetic and molecular peculiarities. Therapeutic approaches for male BC (MBC) are currently extrapolated from the clinical management of female BC, although the disease does not exactly overlap in males and females. Data on specific molecular biomarkers in MBC are lacking, cutting out male patients from more appropriate therapeutic strategies. Growing evidence indicates that Next Generation Sequencing (NGS) multigene panel testing can be used for the detection of predictive molecular biomarkers, including Tumor Mutational Burden (TMB) and Microsatellite Instability (MSI). Methods: In this study, NGS multigene gene panel sequencing, targeting 1.94 Mb of the genome at 523 cancer-relevant genes (TruSight Oncology 500, Illumina), was used to identify and characterize somatic variants, Copy Number Variations (CNVs), TMB and MSI, in 15 Formalin-Fixed Paraffin-Embedded (FFPE) male breast cancer samples. Results and discussion: A total of 40 pathogenic variants were detected in 24 genes. All MBC cases harbored at least one pathogenic variant. PIK3CA was the most frequently mutated gene, with six (40.0%) MBCs harboring targetable PIK3CA alterations. CNVs analysis showed copy number gains in 22 genes. No copy number losses were found. Specifically, 13 (86.7%) MBCs showed gene copy number gains. MYC was the most frequently amplified gene with eight (53.3%) MBCs showing a median fold-changes value of 1.9 (range 1.8-3.8). A median TMB value of 4.3 (range 0.8-12.3) mut/Mb was observed, with two (13%) MBCs showing high-TMB. The median percentage of MSI was 2.4% (range 0-17.6%), with two (13%) MBCs showing high-MSI. Overall, these results indicate that NGS multigene panel sequencing can provide a comprehensive molecular tumor profiling in MBC. The identification of targetable molecular alterations in more than 70% of MBCs suggests that the NGS approach may allow for the selection of MBC patients eligible for precision/targeted therapy.

3.
ASAIO J ; 60(2): 224-33, 2014.
Article in English | MEDLINE | ID: mdl-24399063

ABSTRACT

An oriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit has been used to evaluate its efficiency based on the promotion of peripheral nerve regeneration in rats. The oriented porous micropatterned artificial nerve conduit was designed onto the micropatterned silicon wafers, and then their surfaces were modified with oxygen plasma to increase cell adhesion. The designed conduits were investigated by cell culture analyses with Schwann cells (SCs). The conduits were implanted into a 30 mm gap in sciatic nerves of rats. Four months after surgery, the regenerated nerves were monitored and evaluated by macroscopic assessments and histology and behavioral analyses. Results of cellular analyses showed suitable properties of designed conduit for nerve regeneration. The results demonstrated that in the polymeric graft with SCs, the rat sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. Histological results demonstrated the presence of Schwann and glial cells in regenerated nerves. Functional recovery such as walking, swimming, and recovery of nociceptive function was illustrated for all the grafts especially conduits with SCs. This study proves the feasibility of the artificial nerve graft filled with SCs for peripheral nerve regeneration by bridging a longer defect in an animal model.


Subject(s)
Guided Tissue Regeneration/instrumentation , Nerve Regeneration/physiology , Schwann Cells , Sciatic Nerve/physiology , Animals , Biocompatible Materials , Guided Tissue Regeneration/methods , Male , Polyesters , Porosity , Rats , Rats, Wistar , Recovery of Function , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...