Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Phys Eng ; 12(5): 535-538, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36313407

ABSTRACT

The Omicron variant is spreading at a rate we have never observed with any previous variant. A lot of efforts have been taken to inactivate SARS-CoV-2, especially the omicron variant. Specific wavelength ranges of electromagnetic radiation can be exploited to inactivate coronaviruses. Previous studies show that 222-nm far-Ultraviolet C (far-UVC) light inactivates airborne influenza virus efficiently. Considering the similar genomic sizes of all human coronaviruses, other human coronaviruses, such as SARS-CoV-2, would be expected to be inactivated by far-UVC with a similar efficacy. Taking this into account, it is concluded that exposure to far-UVC can be introduced as a safe method that significantly reduces the ambient level of airborne coronaviruses in crowded places. Biomolecules, particularly proteins, strongly absorb ultraviolet radiation at a wavelength of around 200 nm. Given this consideration, far-UVC has a limited ability to permeate biological materials. Thus, for example, in only around 0.3 mm of tissue, the intensity of 200-nm UV radiation is decreased by half, compared to tissue penetration of about 3 mm at 250 nm. This paper aims to answer the key question of whether far-UVC can penetrate SARS-CoV-2 inside inhalable respiratory droplets (with diameters up to 100 µm).

2.
J Phys Chem Lett ; 13(9): 2197-2204, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35231170

ABSTRACT

By means of quantum mechanics and quantum electrodynamics applied to coupled harmonic Drude oscillators, we study the interaction between two neutral atoms or molecules subject to a uniform static electric field. Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions, as considered within the employed Drude model for both non-retarded and retarded regimes. For the first case, we present an exact solution for two coupled oscillators obtained by diagonalizing the corresponding quantum-mechanical Hamiltonian and demonstrate that the external field can control the strength of different intermolecular interactions and relative orientations of the molecules. In the retarded regime described by quantum electrodynamics, our analysis shows that field-induced electrostatic and polarization energies remain unchanged (in isotropic and homogeneous vacuum) compared to the non-retarded case. For interacting species modeled by quantum Drude oscillators, the developed framework based on quantum mechanics and quantum electrodynamics yields the leading contributions to molecular interactions under the combined action of external and vacuum fields.

3.
Phys Rev Lett ; 128(7): 070602, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35244434

ABSTRACT

Polarizability is a key response property of physical and chemical systems, which has an impact on intermolecular interactions, spectroscopic observables, and vacuum polarization. The calculation of polarizability for quantum systems involves an infinite sum over all excited (bound and continuum) states, concealing the physical interpretation of polarization mechanisms and complicating the derivation of efficient response models. Approximate expressions for the dipole polarizability, α, rely on different scaling laws α∝R^{3}, R^{4}, or R^{7}, for various definitions of the system radius R. Here, we consider a range of single-particle quantum systems of varying spatial dimensionality and having qualitatively different spectra, demonstrating that their polarizability follows a universal four-dimensional scaling law α=C(4µq^{2}/ℏ^{2})L^{4}, where µ and q are the (effective) particle mass and charge, C is a dimensionless excitation-energy ratio, and the characteristic length L is defined via the L^{2} norm of the position operator. This unified formula is also applicable to many-particle systems, as shown by accurately predicting the dipole polarizability of 36 atoms, 1641 small organic molecules, and Bloch electrons in periodic systems.

4.
Phys Rev Lett ; 114(1): 013201, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25615467

ABSTRACT

We present a formula for the body-assisted van der Waals interaction potential between two atoms, one or both being prepared in an excited energy eigenstate. The presence of an arbitrary arrangement for a material environment is taken into account via the Green function. The resulting formula supports one of two conflicting findings recorded. The consistency of our formula is investigated by applying it for the case of two atoms in free space and comparing the resulting expression with the one found from the limiting Casimir-Polder potential between an excited atom and a small dielectric sphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...