Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Lett ; 46(3): 431-441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578514

ABSTRACT

PURPOSE: CO2 fixation methods using green algae have attracted considerable attention because they can be applied for the fixation of dilute CO2 in the atmosphere. However, green algae generally exhibit low CO2 fixation efficiency under atmospheric conditions. Therefore, it is a challenge to improve the CO2 fixation efficiency of green algae under atmospheric conditions. Co-cultivation of certain microalgae with heterotrophic microorganisms can increase the growth potential of microalgae under atmospheric conditions. The objective of this study was to determine the culture conditions under which the growth potential of green algae Chlamydomonas reinhardtii is enhanced by co-culturing with the yeast Saccharomyces cerevisiae, and to identify the cause of the enhanced growth potential. RESULTS: When C. reinhardtii and S. cerevisiae were co-cultured with an initial green algae to yeast inoculum ratio of 1:3, the cell concentration of C. reinhardtii reached 133 × 105 cells/mL on day 18 of culture, which was 1.5 times higher than that of the monoculture. Transcriptome analysis revealed that the expression levels of 363 green algae and 815 yeast genes were altered through co-cultivation. These included genes responsible for ammonium transport and CO2 enrichment mechanism in green algae and the genes responsible for glycolysis and stress responses in yeast. CONCLUSION: We successfully increased C. reinhardtii growth potential by co-culturing it with S. cerevisiae. The main reasons for this are likely to be an increase in inorganic nitrogen available to green algae via yeast metabolism and an increase in energy available for green algae growth instead of CO2 enrichment.


Subject(s)
Chlamydomonas reinhardtii , Coculture Techniques , Saccharomyces cerevisiae , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Coculture Techniques/methods , Carbon Dioxide/metabolism , Gene Expression Profiling
2.
Arch Microbiol ; 206(2): 61, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216809

ABSTRACT

It is known that co-cultivation of green algae with heterotrophic microorganisms, such as yeast, improves green algae's growth potential and carbon dioxide fixation, even under low CO2 concentration conditions such as the atmosphere. Introducing mutations into green algae is also expected to enhance their growth potential. In this study, we sought to improve the growth potential of a co-culture system of the green algae Chlamydomonas reinhardtii and the yeast Saccharomyces cerevisiae by introducing mutations into the green algae. Additionally, we performed a transcriptome analysis of the co-culture of the green algae mutant strain with yeast, discussing the interaction between the green algae mutant strain and the yeast. When the green algae mutant strain was co-cultured with yeast, the number of green algae cells reached 152 × 105 cells/mL after 7 days of culture. This count was 2.6 times higher than when the wild-type green algae strain was cultured alone and 1.6 times higher than when the wild-type green algae strain and yeast were co-cultured. The transcriptome analysis also indicated that the primary reason for the increased growth potential of the green algae mutant strain was its enhanced photosynthetic activity and nitrogen utilization efficiency.


Subject(s)
Chlorophyta , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Coculture Techniques , Photosynthesis , Chlorophyta/genetics , Mutagenesis , Carbon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...