Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Lancet Infect Dis ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38723650

ABSTRACT

BACKGROUND: The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS: Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS: We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION: All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING: GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.

2.
Lancet ; 403(10437): 1660-1670, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38583454

ABSTRACT

BACKGROUND: The RTS,S/AS01E malaria vaccine (RTS,S) was introduced by national immunisation programmes in Ghana, Kenya, and Malawi in 2019 in large-scale pilot schemes. We aimed to address questions about feasibility and impact, and to assess safety signals that had been observed in the phase 3 trial that included an excess of meningitis and cerebral malaria cases in RTS,S recipients, and the possibility of an excess of deaths among girls who received RTS,S than in controls, to inform decisions about wider use. METHODS: In this prospective evaluation, 158 geographical clusters (66 districts in Ghana; 46 sub-counties in Kenya; and 46 groups of immunisation clinic catchment areas in Malawi) were randomly assigned to early or delayed introduction of RTS,S, with three doses to be administered between the ages of 5 months and 9 months and a fourth dose at the age of approximately 2 years. Primary outcomes of the evaluation, planned over 4 years, were mortality from all causes except injury (impact), hospital admission with severe malaria (impact), hospital admission with meningitis or cerebral malaria (safety), deaths in girls compared with boys (safety), and vaccination coverage (feasibility). Mortality was monitored in children aged 1-59 months throughout the pilot areas. Surveillance for meningitis and severe malaria was established in eight sentinel hospitals in Ghana, six in Kenya, and four in Malawi. Vaccine uptake was measured in surveys of children aged 12-23 months about 18 months after vaccine introduction. We estimated that sufficient data would have accrued after 24 months to evaluate each of the safety signals and the impact on severe malaria in a pooled analysis of the data from the three countries. We estimated incidence rate ratios (IRRs) by comparing the ratio of the number of events in children age-eligible to have received at least one dose of the vaccine (for safety outcomes), or age-eligible to have received three doses (for impact outcomes), to that in non-eligible age groups in implementation areas with the equivalent ratio in comparison areas. To establish whether there was evidence of a difference between girls and boys in the vaccine's impact on mortality, the female-to-male mortality ratio in age groups eligible to receive the vaccine (relative to the ratio in non-eligible children) was compared between implementation and comparison areas. Preliminary findings contributed to WHO's recommendation in 2021 for widespread use of RTS,S in areas of moderate-to-high malaria transmission. FINDINGS: By April 30, 2021, 652 673 children had received at least one dose of RTS,S and 494 745 children had received three doses. Coverage of the first dose was 76% in Ghana, 79% in Kenya, and 73% in Malawi, and coverage of the third dose was 66% in Ghana, 62% in Kenya, and 62% in Malawi. 26 285 children aged 1-59 months were admitted to sentinel hospitals and 13 198 deaths were reported through mortality surveillance. Among children eligible to have received at least one dose of RTS,S, there was no evidence of an excess of meningitis or cerebral malaria cases in implementation areas compared with comparison areas (hospital admission with meningitis: IRR 0·63 [95% CI 0·22-1·79]; hospital admission with cerebral malaria: IRR 1·03 [95% CI 0·61-1·74]). The impact of RTS,S introduction on mortality was similar for girls and boys (relative mortality ratio 1·03 [95% CI 0·88-1·21]). Among children eligible for three vaccine doses, RTS,S introduction was associated with a 32% reduction (95% CI 5-51%) in hospital admission with severe malaria, and a 9% reduction (95% CI 0-18%) in all-cause mortality (excluding injury). INTERPRETATION: In the first 2 years of implementation of RTS,S, the three primary doses were effectively deployed through national immunisation programmes. There was no evidence of the safety signals that had been observed in the phase 3 trial, and introduction of the vaccine was associated with substantial reductions in hospital admission with severe malaria. Evaluation continues to assess the impact of four doses of RTS,S. FUNDING: Gavi, the Vaccine Alliance; the Global Fund to Fight AIDS, Tuberculosis and Malaria; and Unitaid.


Subject(s)
Feasibility Studies , Immunization Programs , Malaria Vaccines , Malaria, Cerebral , Humans , Ghana/epidemiology , Malawi/epidemiology , Infant , Female , Kenya/epidemiology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Male , Child, Preschool , Malaria, Cerebral/epidemiology , Malaria, Cerebral/mortality , Prospective Studies , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Meningitis/epidemiology , Meningitis/prevention & control
3.
BMJ Glob Health ; 9(4)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688566

ABSTRACT

In October 2021, the WHO recommended the world's first malaria vaccine-RTS,S/AS01-to prevent malaria in children living in areas with moderate-to-high transmission in sub-Saharan Africa (SSA). A second malaria vaccine, R21/Matrix-M, was recommended for use in October 2023 and added to the WHO list of prequalified vaccines in December 2023. This study analysis assessed the country status of implementation and delivery strategies for RTS,S/AS01 by searching websites for national malaria policies, guidelines and related documents. Direct contact with individuals working in malaria programmes was made to obtain documents not publicly available. 10 countries had documents with information relating to malaria vaccine implementation, 7 referencing RTS,S/AS01 and 3 (Burkina Faso, Kenya and Nigeria) referencing RTS,S/AS01 and R21/Matrix-M. Five other countries reported plans for malaria vaccine roll-out without specifying which vaccine. Ghana, Kenya and Malawi, which piloted RTS,S/AS01, have now integrated the vaccine into routine immunisation services. Cameroon and Burkina Faso are the first countries outside the pilot countries to incorporate the vaccine into national immunisation services. Uganda plans a phased RTS,S/AS01 introduction, while Guinea plans to first pilot RTS,S/AS01 in five districts. The RTS,S/AS01 schedule varied by country, with the first dose administered at 5 or 6 months in all countries but the fourth dose at either 18, 22 or 24 months. SSA countries have shown widespread interest in rolling out the malaria vaccine, the Global Alliance for Vaccines and Immunization having approved financial support for 20 of 30 countries which applied as of March 2024. Limited availability of RTS,S/AS01 means that some approved countries will not receive the required doses. Vaccine availability and equity must be addressed even as R21/Matrix-M becomes available.


Subject(s)
Malaria Vaccines , World Health Organization , Humans , Malaria Vaccines/administration & dosage , Africa South of the Sahara , Malaria/prevention & control , Immunization Programs , Health Policy
4.
JCI Insight ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687615

ABSTRACT

A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole sporozoite PfSPZ Vaccine in African infants. Innate immune activation and myeloid signatures at pre-vaccination baseline correlated with protection from Pf parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ Vaccine dose. Machine learning identified spliceosome, proteosome, and resting dendritic cell signatures as pre-vaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline CSP-specific IgG predicted non-protection. Pre-vaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T-cell responses post-vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naïve mice while diminishing the CD8+ T-cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity of whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggest that PfSPZ Vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.

5.
J Infect Dis ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438123

ABSTRACT

BACKGROUND: The RTS, S/AS01E malaria vaccine (RTS, S) is recommended for children in moderate-to-high Plasmodium falciparum malaria transmission areas. This phase 2b trial (NCT03276962) evaluates RTS, S fractional- and full-dose regimens in Ghana and Kenya. METHODS: 1500 children aged 5-17 months were randomised (1:1:1:1:1) to receive RTS, S or rabies control vaccine. RTS, S groups received two full RTS, S doses at month (M)0/M1 followed by either full (groups R012-20, R012-14-26) or fractional (1/5) doses (groups Fx012-14-26, Fx017-20-32). RESULTS: At M32 post-first dose, vaccine efficacy (VE) against clinical malaria (all episodes) ranged from 38% (R012-20; 95%CI: 24-49) to 53% (R012-14-26; 95%CI: 42-62). Vaccine impact estimates (cumulative number of malaria cases averted/1000 children vaccinated) were 1344 (R012-20), 2450 (R012-14-26), 2273 (Fx012-14-26), 2112 (Fx017-20-32). To account for differences in vaccine volume (fractional- versus full-dose), in a post-hoc analysis, we also estimated cases averted/1000 RTS, S full-dose equivalents: 336 (R012-20), 490 (R012-14-26), 874 (Fx012-14-26), 880 (Fx017-20-32). CONCLUSIONS: VE against clinical malaria was similar in all RTS, S groups. Vaccine impact accounting for full-dose equivalence suggests that using fractional-dose regimens could be a viable dose-sparing strategy. If borne out through trial end (M50), these observations underscore the means to reduce cost per regimen with a goal of maximising impact and optimising supply.

6.
Lancet Glob Health ; 12(4): e672-e684, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430916

ABSTRACT

BACKGROUND: Malaria accounts for over half a million child deaths annually. WHO recommends RTS,S/AS01 to prevent malaria in children living in moderate-to-high malaria transmission regions. We conducted a qualitative longitudinal study to investigate the contextual and dynamic factors shaping vaccine delivery and uptake during a pilot introduction in western Kenya. METHODS: The study was conducted between Oct 3, 2019, and Mar 24, 2022. We conducted participant and non-participant observations and in-depth interviews with health-care providers, health managers, and national policymakers at three timepoints using an iterative approach and observations of practices and processes of malaria vaccine delivery. Transcripts were coded by content analysis using the consolidated framework for implementation research, to which emerging themes were added deductively and categorised into challenges and opportunities. FINDINGS: We conducted 112 in-depth interviews with 60 participants (25 health-care providers, 27 managers, and eight policy makers). Health-care providers highlighted limitations in RTS,S/AS01 integration into routine immunisation services due to the concurrent pilot evaluation and temporary adaptations for health reporting. Initial challenges related to the complexity of the four-dose schedule (up to 24-months); however, self-efficacy increased over time as the health-care providers gained experience in vaccine delivery. Low uptake of the fourth dose remained a challenge. Health managers cited insufficient trained immunisation staff and inadequate funding for supervision. Confidence in the vaccine increased among all participant groups owing to reductions in malaria frequency and severity. INTERPRETATION: Integration of RTS,S/AS01 into immunisation services in western Kenya presented substantial operational challenges most of which were overcome in the first 2 years, providing important lessons for other countries. Programme expansion is feasible with intensive staff training and retention, enhanced supervision, and defaulter-tracing to ensure uptake of all doses. FUNDING: PATH via World Health Organization; Gavi, the Vaccine Alliance; The Global Fund; and Unitaid.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Child , Humans , Infant , Malaria, Falciparum/prevention & control , Kenya , Longitudinal Studies , Malaria/prevention & control , Vaccination
7.
Lancet ; 403(10424): 365-378, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38224710

ABSTRACT

BACKGROUND: The efficacy of daily co-trimoxazole, an antifolate used for malaria chemoprevention in pregnant women living with HIV, is threatened by cross-resistance of Plasmodium falciparum to the antifolate sulfadoxine-pyrimethamine. We assessed whether addition of monthly dihydroartemisinin-piperaquine to daily co-trimoxazole is more effective at preventing malaria infection than monthly placebo plus daily co-trimoxazole in pregnant women living with HIV. METHODS: We did an individually randomised, two-arm, placebo-controlled trial in areas with high-grade sulfadoxine-pyrimethamine resistance in Kenya and Malawi. Pregnant women living with HIV on dolutegravir-based combination antiretroviral therapy (cART) who had singleton pregnancies between 16 weeks' and 28 weeks' gestation were randomly assigned (1:1) by computer-generated block randomisation, stratified by site and HIV status (known positive vs newly diagnosed), to daily co-trimoxazole plus monthly dihydroartemisinin-piperaquine (three tablets of 40 mg dihydroartemisinin and 320 mg piperaquine given daily for 3 days) or daily co-trimoxazole plus monthly placebo. Daily co-trimoxazole consisted of one tablet of 160 mg sulfamethoxazole and 800 mg trimethoprim. The primary endpoint was the incidence of Plasmodium infection detected in the peripheral (maternal) or placental (maternal) blood or tissue by PCR, microscopy, rapid diagnostic test, or placental histology (active infection) from 2 weeks after the first dose of dihydroartemisinin-piperaquine or placebo to delivery. Log-binomial regression was used for binary outcomes, and Poisson regression for count outcomes. The primary analysis was by modified intention to treat, consisting of all randomised eligible participants with primary endpoint data. The safety analysis included all women who received at least one dose of study drug. All investigators, laboratory staff, data analysts, and participants were masked to treatment assignment. This trial is registered with ClinicalTrials.gov, NCT04158713. FINDINGS: From Nov 11, 2019, to Aug 3, 2021, 904 women were enrolled and randomly assigned to co-trimoxazole plus dihydroartemisinin-piperaquine (n=448) or co-trimoxazole plus placebo (n=456), of whom 895 (99%) contributed to the primary analysis (co-trimoxazole plus dihydroartemisinin-piperaquine, n=443; co-trimoxazole plus placebo, n=452). The cumulative risk of any malaria infection during pregnancy or delivery was lower in the co-trimoxazole plus dihydroartemisinin-piperaquine group than in the co-trimoxazole plus placebo group (31 [7%] of 443 women vs 70 [15%] of 452 women, risk ratio 0·45, 95% CI 0·30-0·67; p=0·0001). The incidence of any malaria infection during pregnancy or delivery was 25·4 per 100 person-years in the co-trimoxazole plus dihydroartemisinin-piperaquine group versus 77·3 per 100 person-years in the co-trimoxazole plus placebo group (incidence rate ratio 0·32, 95% CI 0·22-0·47, p<0·0001). The number needed to treat to avert one malaria infection per pregnancy was 7 (95% CI 5-10). The incidence of serious adverse events was similar between groups in mothers (17·7 per 100 person-years in the co-trimoxazole plus dihydroartemisinin-piperaquine group [23 events] vs 17·8 per 100 person-years in the co-trimoxazole group [25 events]) and infants (45·4 per 100 person-years [23 events] vs 40·2 per 100 person-years [21 events]). Nausea within the first 4 days after the start of treatment was reported by 29 (7%) of 446 women in the co-trimoxazole plus dihydroartemisinin-piperaquine group versus 12 (3%) of 445 women in the co-trimoxazole plus placebo group. The risk of adverse pregnancy outcomes did not differ between groups. INTERPRETATION: Addition of monthly intermittent preventive treatment with dihydroartemisinin-piperaquine to the standard of care with daily unsupervised co-trimoxazole in areas of high antifolate resistance substantially improves malaria chemoprevention in pregnant women living with HIV on dolutegravir-based cART and should be considered for policy. FUNDING: European and Developing Countries Clinical Trials Partnership 2; UK Joint Global Health Trials Scheme (UK Foreign, Commonwealth and Development Office; Medical Research Council; National Institute for Health Research; Wellcome); and Swedish International Development Cooperation Agency.


Subject(s)
Antimalarials , Artemisinins , Folic Acid Antagonists , HIV Infections , Malaria , Piperazines , Quinolines , Female , Humans , Infant , Pregnancy , Antimalarials/adverse effects , Chemoprevention , Folic Acid Antagonists/therapeutic use , HIV Infections/epidemiology , HIV Infections/prevention & control , HIV Infections/drug therapy , Kenya/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Malawi/epidemiology , Placenta , Pregnancy Outcome , Pregnant Women , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Double-Blind Method
8.
medRxiv ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38045387

ABSTRACT

Background: The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods: 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results: We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions: All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).

9.
BMC Public Health ; 23(1): 2283, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980467

ABSTRACT

BACKGROUND: Malaria is a significant public health threat in sub-Saharan Africa, particularly among children. The RTS,S/AS01 malaria vaccine reduces the risk and severity of malaria in children. RTS,S/AS01 was piloted in three African countries, Ghana, Kenya and Malawi, to assess safety, feasibility and cost-effectiveness in real-world settings. A qualitative longitudinal study was conducted as part of the feasibility assessment. This analysis explores RTS,S/AS01 vaccination barriers and identifies potential motivators among caregivers in three sub-counties in western Kenya. METHODS: A cohort of 63 caregivers with a malaria vaccine eligible child was interviewed at three time points over 24 months. A sub-set of 11 caregivers whose eligible children were either partially or non-vaccinated were selected for this sub-analysis. The 5A Taxonomy for root causes of under-vaccination was used to organise the inductively-coded data into categories (awareness, acceptance, access, affordability, and activation) and identify the factors influencing uptake across caregivers. A trajectory analysis was conducted to understand changes in factors over time within each caregiver experience. Caregiver narratives are used to illustrate how the factors influencing uptake were interrelated and changed over time. RESULTS: Lack of awareness, previous negative experiences with routine childhood immunisations and the burden of getting to the health facility contributed to caregivers initially delaying uptake of the vaccine. Over time concerns about vaccine side effects diminished and anticipated vaccination benefits strongly motivated caregivers to vaccinate their children. Persistent health system barriers (e.g., healthcare provider strikes, vaccine stockouts, negative provider attitudes) meant some children missed the first-dose eligibility window by aging-out. CONCLUSIONS: Caregivers in this study believed the RTS,S/AS01 to be effective and were motivated to have their children vaccinated. Despite these positive perceptions of the malaria vaccine, uptake was substantially hindered by persistent health system constraints. Negative provider attitudes emerged as a powerful deterrent to attending immunisation services and hampered uptake of the vaccine. Strategies that focus on improving interpersonal communication skills among healthcare providers are needed.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Child , Humans , Infant , Malaria, Falciparum/prevention & control , Kenya , Longitudinal Studies , Malaria/prevention & control , Malaria/drug therapy , Vaccination
10.
Nat Commun ; 14(1): 6392, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872141

ABSTRACT

Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa's most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures.


Subject(s)
Salmonella Infections , Salmonella typhimurium , Humans , Africa South of the Sahara/epidemiology , Drug Resistance, Microbial , Genomics , Salmonella Infections/epidemiology , Salmonella typhimurium/genetics
11.
Womens Health (Lond) ; 19: 17455057231189547, 2023.
Article in English | MEDLINE | ID: mdl-37551659

ABSTRACT

BACKGROUND: Postnatal depression (PND) is associated with adverse infant neurodevelopmental outcomes. Evidence is limited on how PND influences neonatal (<28 days old) outcomes in low- and middle-income countries, such as Kenya, which bear the global burden of neonatal morbidity and mortality. OBJECTIVES: To explore how PND influences neonatal feeding and care practices among women in the early postnatal period in rural Western Kenya. DESIGN: A cross-sectional study. METHODS: Semi-structured interviews were conducted at 2-weeks postpartum among mothers of newborn infants identified <72 h old from the postnatal wards and clinics across five health facilities in Kisumu County of Western Kenya. They were all screened for features suggestive of postnatal depression using the Edinburgh Postnatal Depression Scale. RESULTS: Twenty-four mothers were interviewed, 13 of whom had features suggestive of PND. All mothers experienced health or socio-economic adversities in the perinatal period, including traumatic deliveries, financial constraints, and challenging relationships with partners/other family members. Feeding difficulties due to perceived insufficient breastmilk were a particular challenge for mothers with features of PND, who were more likely to introduce complementary feeds. Maternal health-seeking decisions were influenced by high financial cost, long waiting times and poor interactions with health care providers that induced stress and fear among mothers. Maternal caregiving capacity was influenced by her ability to juggle other household duties, which was difficult for mothers with features suggestive of PND. Support from friends and relatives positively impacted maternal mood and caregiving ability. CONCLUSION: Mothers experienced many stress-inducing events in the perinatal period which potentially exacerbated features of PND in the immediate postnatal period. Women with features of PND were particularly vulnerable to these stressors that influenced infant caregiving practices. Addressing the socio-economic challenges and health system gaps that include scale up of compassionate and respectful care for women during pregnancy and childbirth, as well as early screening and intervention of PND, through enhanced referral pathways between health facilities and community support structures, could mitigate against the impact of PND on neonatal caregiving.


Subject(s)
Depression, Postpartum , Infant, Newborn , Pregnancy , Female , Humans , Depression, Postpartum/epidemiology , Kenya/epidemiology , Cross-Sectional Studies , Mothers , Postpartum Period , Postnatal Care
12.
Am J Trop Med Hyg ; 109(3): 704-712, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37549893

ABSTRACT

Limited evidence suggests that children in sub-Saharan Africa hospitalized with all-cause severe anemia or severe acute malnutrition (SAM) are at high risk of dying in the first few months after discharge. We aimed to compare the risks of post-discharge mortality by health condition among hospitalized children in an area with high malaria transmission in western Kenya. We conducted a retrospective cohort study among recently discharged children aged < 5 years using mortality data from a health and demographic surveillance system that included household and pediatric in-hospital surveillance. Cox regression was used to compare post-discharge mortality. Between 2008 and 2013, overall in-hospital mortality was 2.8% (101/3,639). The mortality by 6 months after discharge (primary outcome) was 6.2% (159/2,556) and was highest in children with SAM (21.6%), followed by severe anemia (15.5%), severe pneumonia (5.6%), "other conditions" (5.6%), and severe malaria (0.7%). Overall, the 6-month post-discharge mortality in children hospitalized with SAM (hazard ratio [HR] = 3.95, 2.60-6.00, P < 0.001) or severe anemia (HR = 2.55, 1.74-3.71, P < 0.001) was significantly higher than that in children without these conditions. Severe malaria was associated with lower 6-month post-discharge mortality than children without severe malaria (HR = 0.33, 0.21-0.53, P < 0.001). The odds of dying by 6 months after discharge tended to be higher than during the in-hospital period for all children, except for those admitted with severe malaria. The first 6 months after discharge is a high-risk period for mortality among children admitted with severe anemia and SAM in western Kenya. Strategies to address this risk period are urgently needed.


Subject(s)
Anemia , Malaria , Humans , Child , Infant , Child, Preschool , Patient Discharge , Retrospective Studies , Kenya/epidemiology , Aftercare , Malaria/complications , Anemia/complications
13.
Malar J ; 22(1): 203, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400805

ABSTRACT

BACKGROUND: Entomological surveillance is traditionally conducted by supervised teams of trained technicians. However, it is expensive and limiting in the number of sites visited. Surveillance through community-based collectors (CBC) may be more cost-effective and sustainable for longitudinal entomological monitoring. This study evaluated the efficiency of CBCs in monitoring mosquito densities compared to quality-assured sampling conducted by experienced entomology technicians. METHODS: Entomological surveillance employing CBCs was conducted in eighteen clusters of villages in western Kenya using indoor and outdoor CDC light traps and indoor Prokopack aspiration. Sixty houses in each cluster were enrolled and sampled once every month. Collected mosquitoes were initially identified to the genus level by CBCs, preserved in 70% ethanol and transferred to the laboratory every 2 weeks. Parallel, collections by experienced entomology field technicians were conducted monthly by indoor and outdoor CDC light traps and indoor Prokopack aspiration and served as a quality assurance of the CBCs. RESULTS: Per collection, the CBCs collected 80% fewer Anopheles gambiae sensu lato (s.l.) [RR = 0.2; (95% CI 0.14-0.27)] and Anopheles coustani [RR = 0.2; (95% CI 0.06-0.53)] and 90% fewer Anopheles funestus [RR = 0.1; (95% CI 0.08-0.19)] by CDC light traps compared to the quality assured (QA) entomology teams. Significant positive correlations were however observed between the monthly collections by CBCs and QA teams for both An. gambiae and An. funestus. In paired identifications of pooled mosquitoes, the CBCs identified 4.3 times more Anopheles compared to experienced technicians. The cost per person-night was lower in the community-based sampling at $9.1 compared to $89.3 by QA per collection effort. CONCLUSION: Unsupervised community-based mosquito surveillance collected substantially fewer mosquitoes per trap-night compared to quality-assured collection by experienced field teams, while consistently overestimating the number of Anopheles mosquitoes during identification. However, the numbers collected were significantly correlated between the CBCs and the QA teams suggesting that trends observed by CBCs and QA teams were similar. Further studies are needed to evaluate whether adopting low-cost, devolved supervision with spot checks, coupled with remedial training of the CBCs, can improve community-based collections to be considered a cost-effective alternative to surveillance conducted by experienced entomological technicians.


Subject(s)
Anopheles , Malaria , Animals , Humans , Kenya/epidemiology , Mosquito Vectors , Feeding Behavior , Mosquito Control
14.
Popul Health Metr ; 21(1): 10, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507749

ABSTRACT

INTRODUCTION: Infant and neonatal mortality estimates are typically derived from retrospective birth histories collected through surveys in countries with unreliable civil registration and vital statistics systems. Yet such data are subject to biases, including under-reporting of deaths and age misreporting, which impact mortality estimates. Prospective population-based cohort studies are an underutilized data source for mortality estimation that may offer strengths that avoid biases. METHODS: We conducted a secondary analysis of data from the Child Health Epidemiology Reference Group, including 11 population-based pregnancy or birth cohort studies, to evaluate the appropriateness of vital event data for mortality estimation. Analyses were descriptive, summarizing study designs, populations, protocols, and internal checks to assess their impact on data quality. We calculated infant and neonatal morality rates and compared patterns with Demographic and Health Survey (DHS) data. RESULTS: Studies yielded 71,760 pregnant women and 85,095 live births. Specific field protocols, especially pregnancy enrollment, limited exclusion criteria, and frequent follow-up visits after delivery, led to higher birth outcome ascertainment and fewer missing deaths. Most studies had low follow-up loss in pregnancy and the first month with little evidence of date heaping. Among studies in Asia and Latin America, neonatal mortality rates (NMR) were similar to DHS, while several studies in Sub-Saharan Africa had lower NMRs than DHS. Infant mortality varied by study and region between sources. CONCLUSIONS: Prospective, population-based cohort studies following rigorous protocols can yield high-quality vital event data to improve characterization of detailed mortality patterns of infants in low- and middle-income countries, especially in the early neonatal period where mortality risk is highest and changes rapidly.


Subject(s)
Infant Mortality , Perinatal Death , Infant , Infant, Newborn , Child , Humans , Female , Pregnancy , Latin America/epidemiology , Prospective Studies , Retrospective Studies , Africa South of the Sahara , Asia/epidemiology
15.
BMC Health Serv Res ; 23(1): 815, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37525192

ABSTRACT

BACKGROUND: We performed an economic analysis of a new technology used in antenatal care (ANC) clinics, the ANC panel. Introduced in 2019-2020 in five Rwandan districts, the ANC panel screens for four infections [hepatitis B virus (HBV), human immunodeficiency virus (HIV), malaria, and syphilis] using blood from a single fingerstick. It increases the scope and sensitivity of screening over conventional testing. METHODS: We developed and applied an Excel-based economic and epidemiologic model to perform cost-effectiveness and cost-benefit analyses of this technology in Kenya, Rwanda, and Uganda. Costs include the ANC panel itself, its administration, and follow-up treatment. Effectiveness models predicted impacts on maternal and infant mortality and other outcomes. Key parameters are the baseline prevalence of each infection and the effectiveness of early treatment using observations from the Rwanda pilot, national and international literature, and expert opinion. For each parameter, we found the best estimate (with 95% confidence bound). RESULTS: The ANC panel averted 92 (69-115) disability-adjusted life years (DALYs) per 1,000 pregnant women in ANC in Kenya, 54 (52-57) in Rwanda, and 258 (156-360) in Uganda. Net healthcare costs per woman ranged from $0.53 ($0.02-$4.21) in Kenya, $1.77 ($1.23-$5.60) in Rwanda, and negative $5.01 (-$6.45 to $0.48) in Uganda. Incremental cost-effectiveness ratios (ICERs) in dollars per DALY averted were $5.76 (-$3.50-$11.13) in Kenya, $32.62 ($17.54-$46.70) in Rwanda, and negative $19.40 (-$24.18 to -$15.42) in Uganda. Benefit-cost ratios were $17.48 ($15.90-$23.71) in Kenya, $6.20 ($5.91-$6.45) in Rwanda, and $25.36 ($16.88-$33.14) in Uganda. All results appear very favorable and cost-saving in Uganda. CONCLUSION: Though subject to uncertainty, even our lowest estimates were still favorable. By combining field data and literature, the ANC model could be applied to other countries.


Subject(s)
Health Care Costs , Prenatal Care , Infant , Female , Pregnancy , Humans , Rwanda/epidemiology , Kenya/epidemiology , Uganda/epidemiology , Cost-Benefit Analysis
16.
Int J Infect Dis ; 135: 28-40, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37516425

ABSTRACT

OBJECTIVES: Malaria and sexually transmitted and reproductive tract infections (STIs/RTIs) are highly prevalent in sub-Saharan Africa and associated with poor pregnancy outcomes. We investigated the individual and combined effects of malaria and curable STIs/RTIs on fetal growth in Kenya, Tanzania, and Malawi. METHODS: This study was nested within a randomized trial comparing monthly intermittent preventive treatment for malaria in pregnancy with sulfadoxine-pyrimethamine vs dihydroartemisinin-piperaquine, alone or combined with azithromycin. Fetal weight gain was assessed by serial prenatal ultrasound. Malaria was assessed monthly, and Treponema pallidum, Neisseria gonorrhoeae, Trichomonas vaginalis, Chlamydia trachomatis, and bacterial vaginosis at enrollment and in the third trimester. The effect of malaria and STIs/RTIs on fetal weight/birthweight Z-scores was evaluated using mixed-effects linear regression. RESULTS: In total, 1435 pregnant women had fetal/birth weight assessed 3950 times. Compared to women without malaria or STIs/RTIs (n = 399), malaria-only (n = 267), STIs/RTIs only (n = 410) or both (n = 353) were associated with reduced fetal growth (adjusted mean difference in fetal/birth weight Z-score [95% confidence interval]: malaria = -0.18 [-0.31,-0.04], P = 0.01; STIs/RTIs = -0.14 [-0.26,-0.03], P = 0.01; both = -0.20 [-0.33,-0.07], P = 0.003). Paucigravidae experienced the greatest impact. CONCLUSION: Malaria and STIs/RTIs are associated with poor fetal growth especially among paucigravidae women with dual infections. Integrated antenatal interventions are needed to reduce the burden of both malaria and STIs/RTIs.


Subject(s)
Malaria , Reproductive Tract Infections , Sexually Transmitted Diseases , Female , Pregnancy , Humans , Birth Weight , Cohort Studies , Kenya/epidemiology , Fetal Weight , Malawi/epidemiology , Tanzania/epidemiology , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Pregnancy Outcome , Fetal Development
17.
BMJ Open ; 13(7): e074510, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429677

ABSTRACT

OBJECTIVE: To assess the quality of available and accessible national Clinical Practice Guidelines (CPGs) in Kenya using the Appraisal of Guidelines for Research and Evaluation II (AGREE II) tool. METHODS: We searched the websites of the Kenyan Ministry of Health, professional associations and contacted experts in relevant organisations. Our scope was guidelines on maternal, neonatal, nutritional disorders, injuries, communicable and non-communicable diseases in Kenya published in the last 5 years until 30 June 2022. Study selection and data extraction were done by three independent reviewers with disagreements resolved via discussion or with a senior reviewer. We conducted a quality assessment using the online English version of AGREE II tool across six domains. Descriptive statistics were analysed using Stata software V.17. The primary outcome was the methodological quality of the included CPGs assessed by the AGREE II tool score. RESULTS: We retrieved 95 CPGs and included 24 in the analysis after screening for eligibility. The CPGs scored best in clarity of presentation and least in the rigour of development. In descending order, the appraisal scores (mean and CI) per domain were as follows: Clarity of presentation 82.96% (95% CI 78.35% to 87.57%) with all guidelines scoring above 50%. Scope and purpose 61.75% (95% CI 54.19% to 69.31%) with seven guidelines scoring less than 50%. Stakeholder involvement 45.25% (95% CI 40.01% to 50.49%) with 16 CPGs scoring less than 50%. Applicability domain 19.88% (95% CI 13.32% to 26.43%) with only one CPG scoring above 50%. Editorial independence 6.92% (95% CI 3.47% to 10.37%) with no CPG scoring above 50% and rigour of development 3% (95% CI 0.61% to 5.39%) with no CPG scoring at least 50%. CONCLUSION: Our findings suggest that the quality of CPGs in Kenya is limited mainly by the rigour of development, editorial independence, applicability and stakeholder involvement. Training initiatives on evidence-based methodology among guideline developers are needed to improve the overall quality of CPGs for better patient care.


Subject(s)
Dissent and Disputes , Noncommunicable Diseases , Humans , Infant, Newborn , Eligibility Determination , Kenya , Records , Practice Guidelines as Topic
18.
Front Pediatr ; 11: 1173238, 2023.
Article in English | MEDLINE | ID: mdl-37465422

ABSTRACT

Background: Globally, low birthweight (LBW) infants (<2,500 g) have the highest risk of mortality during the first year of life. Those who survive often have adverse health outcomes. Post-discharge outcomes of LBW infants in impoverished communities in Africa are largely unknown. This paper describes the design and implementation of a mother-to-mother peer training and mentoring programme for the follow-up of LBW infants in rural Kenya. Methods: Key informant interviews were conducted with 10 mothers of neonates (infants <28 days) from two rural communities in western Kenya. These data informed the identification of key characteristics required for mother-to-mother peer supporters (peer mothers) following up LBW infants post discharge. Forty potential peer mothers were invited to attend a 5-day training programme that focused on three main themes: supportive care using appropriate communication, identification of severe illness, and recommended care strategies for LBW infants. Sixteen peer mothers were mentored to conduct seven community follow-up visits to each mother-LBW infant pair with fifteen completing all the visits over a 6-month period. A mixed methods approach was used to evaluate the implementation of the programme. Quantitative data of peer mother socio-demographic characteristics, recruitment, and retention was collected. Two post-training focus group discussions were conducted with the peer mothers to explore their experiences of the programme. Descriptive statistics were generated from the quantitative data and the qualitative data was analysed using a thematic framework. Results: The median age of the peer mothers was 26 years (range 21-43). From March-August 2019, each peer mother conducted a median of 28 visits (range 7-77) with fourteen (88%) completing all their assigned follow-up visits. Post training, our interviews suggest that peer mothers felt empowered to promote appropriate infant feeding practices. They gave multiple examples of improved health seeking behaviours as a result of the peer mother training programme. Conclusion: Our peer mother training programme equipped peer mothers with the knowledge and skills for the post-discharge follow-up of LBW infants in this rural community in Kenya. Community-based interventions for LBW infants, delivered by appropriately trained peer mothers, have the potential to address the current gaps in post-discharge care for these infants.

19.
Sci Rep ; 13(1): 10310, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365258

ABSTRACT

In areas of moderate to intense Plasmodium falciparum transmission, malaria in pregnancy remains a significant cause of low birth weight, stillbirth, and severe anaemia. Previously, fetal sex has been identified to modify the risks of maternal asthma, pre-eclampsia, and gestational diabetes. One study demonstrated increased risk of placental malaria in women carrying a female fetus. We investigated the association between fetal sex and malaria in pregnancy in 11 pregnancy studies conducted in sub-Saharan African countries and Papua New Guinea through meta-analysis using log binomial regression fitted to a random-effects model. Malaria infection during pregnancy and delivery was assessed using light microscopy, polymerase chain reaction, and histology. Five studies were observational studies and six were randomised controlled trials. Studies varied in terms of gravidity, gestational age at antenatal enrolment and bed net use. Presence of a female fetus was associated with malaria infection at enrolment by light microscopy (risk ratio 1.14 [95% confidence interval 1.04, 1.24]; P = 0.003; n = 11,729). Fetal sex did not associate with malaria infection when other time points or diagnostic methods were used. There is limited evidence that fetal sex influences the risk of malaria infection in pregnancy.


Subject(s)
Malaria, Falciparum , Malaria , Infant, Newborn , Female , Pregnancy , Humans , Plasmodium falciparum , Placenta , Malaria/epidemiology , Malaria/complications , Infant, Low Birth Weight , Stillbirth , Malaria, Falciparum/epidemiology , Malaria, Falciparum/complications
20.
Sci Rep ; 13(1): 7367, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147317

ABSTRACT

Assessment of the relative impact of climate change on malaria dynamics is a complex problem. Climate is a well-known factor that plays a crucial role in driving malaria outbreaks in epidemic transmission areas. However, its influence in endemic environments with intensive malaria control interventions is not fully understood, mainly due to the scarcity of high-quality, long-term malaria data. The demographic surveillance systems in Africa offer unique platforms for quantifying the relative effects of weather variability on the burden of malaria. Here, using a process-based stochastic transmission model, we show that in the lowlands of malaria endemic western Kenya, variations in climatic factors played a key role in driving malaria incidence during 2008-2019, despite high bed net coverage and use among the population. The model captures some of the main mechanisms of human, parasite, and vector dynamics, and opens the possibility to forecast malaria in endemic regions, taking into account the interaction between future climatic conditions and intervention scenarios.


Subject(s)
Malaria , Humans , Malaria/epidemiology , Weather , Incidence , Kenya/epidemiology , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL
...