Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Front Immunol ; 15: 1309916, 2024.
Article in English | MEDLINE | ID: mdl-38983848

ABSTRACT

Advances in spatial proteomics and protein colocalization are a driving force in the understanding of cellular mechanisms and their influence on biological processes. New methods in the field of spatial proteomics call for the development of algorithms and open up new avenues of research. The newly introduced Molecular Pixelation (MPX) provides spatial information on surface proteins and their relationship with each other in single cells. This allows for in silico representation of neighborhoods of membrane proteins as graphs. In order to analyze this new data modality, we adapted local assortativity in networks of MPX single-cell graphs and created a method that is able to capture detailed information on the spatial relationships of proteins. The introduced method can evaluate the pairwise colocalization of proteins and access higher-order similarity to investigate the colocalization of multiple proteins at the same time. We evaluated the method using publicly available MPX datasets where T cells were treated with a chemokine to study uropod formation. We demonstrate that adjusted local assortativity detects the effects of the stimuli at both single- and multiple-marker levels, which enhances our understanding of the uropod formation. We also applied our method to treating cancerous B-cell lines using a therapeutic antibody. With the adjusted local assortativity, we recapitulated the effect of rituximab on the polarity of CD20. Our computational method together with MPX improves our understanding of not only the formation of cell polarity and protein colocalization under stimuli but also advancing the overall insight into immune reaction and reorganization of cell surface proteins, which in turn allows the design of novel therapies. We foresee its applicability to other types of biological spatial data when represented as undirected graphs.


Subject(s)
Membrane Proteins , Humans , Membrane Proteins/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Proteomics/methods , Algorithms , Rituximab/pharmacology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Single-Cell Analysis/methods
2.
Nat Methods ; 21(6): 1044-1052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720062

ABSTRACT

The spatial distribution of cell surface proteins governs vital processes of the immune system such as intercellular communication and mobility. However, fluorescence microscopy has limited scalability in the multiplexing and throughput needed to drive spatial proteomics discoveries at subcellular level. We present Molecular Pixelation (MPX), an optics-free, DNA sequence-based method for spatial proteomics of single cells using antibody-oligonucleotide conjugates (AOCs) and DNA-based, nanometer-sized molecular pixels. The relative locations of AOCs are inferred by sequentially associating them into local neighborhoods using the sequence-unique DNA pixels, forming >1,000 spatially connected zones per cell in 3D. For each single cell, DNA-sequencing reads are computationally arranged into spatial proteomics networks for 76 proteins. By studying immune cell dynamics using spatial statistics on graph representations of the data, we identify known and new patterns of spatial organization of proteins on chemokine-stimulated T cells, highlighting the potential of MPX in defining cell states by the spatial arrangement of proteins.


Subject(s)
Proteomics , Single-Cell Analysis , Proteomics/methods , Single-Cell Analysis/methods , Humans , T-Lymphocytes/metabolism , Sequence Analysis, DNA/methods
3.
Front Optoelectron ; 16(1): 37, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975944

ABSTRACT

Although perovskite light-emitting diodes (PeLEDs) have seen unprecedented development in device efficiency over the past decade, they suffer significantly from poor operational stability. This is especially true for blue PeLEDs, whose operational lifetime remains orders of magnitude behind their green and red counterparts. Here, we systematically investigate this efficiency-stability discrepancy in a series of green- to blue-emitting PeLEDs based on mixed Br/Cl-perovskites. We find that chloride incorporation, while having only a limited impact on efficiency, detrimentally affects device stability even in small amounts. Device lifetime drops exponentially with increasing Cl-content, accompanied by an increased rate of change in electrical properties during operation. We ascribe this phenomenon to an increased mobility of halogen ions in the mixed-halide lattice due to an increased chemically and structurally disordered landscape with reduced migration barriers. Our results indicate that the stability enhancement for PeLEDs might require different strategies from those used for improving efficiency.

4.
Nat Commun ; 14(1): 5417, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669926

ABSTRACT

Cell lines are valuable resources as model for human biology and translational medicine. It is thus important to explore the concordance between the expression in various cell lines vis-à-vis human native and disease tissues. In this study, we investigate the expression of all human protein-coding genes in more than 1,000 human cell lines representing 27 cancer types by a genome-wide transcriptomics analysis. The cell line gene expression is compared with the corresponding profiles in various tissues, organs, single-cell types and cancers. Here, we present the expression for each cell line and give guidance for the most appropriate cell line for a given experimental study. In addition, we explore the cancer-related pathway and cytokine activity of the cell lines to aid human biology studies and drug development projects. All data are presented in an open access cell line section of the Human Protein Atlas to facilitate the exploration of all human protein-coding genes across these cell lines.


Subject(s)
Neoplasms , Humans , Cell Line , Drug Development , Gene Expression Profiling , Gene Expression
5.
Nat Commun ; 14(1): 4308, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463882

ABSTRACT

A comprehensive characterization of blood proteome profiles in cancer patients can contribute to a better understanding of the disease etiology, resulting in earlier diagnosis, risk stratification and better monitoring of the different cancer subtypes. Here, we describe the use of next generation protein profiling to explore the proteome signature in blood across patients representing many of the major cancer types. Plasma profiles of 1463 proteins from more than 1400 cancer patients are measured in minute amounts of blood collected at the time of diagnosis and before treatment. An open access Disease Blood Atlas resource allows the exploration of the individual protein profiles in blood collected from the individual cancer patients. We also present studies in which classification models based on machine learning have been used for the identification of a set of proteins associated with each of the analyzed cancers. The implication for cancer precision medicine of next generation plasma profiling is discussed.


Subject(s)
Hematologic Neoplasms , Neoplasms , Humans , Proteome/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Precision Medicine , Machine Learning
6.
Mater Horiz ; 10(4): 1446-1453, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36789680

ABSTRACT

The threshold carrier density, conventionally evaluated from optical pumping, is a key reference parameter towards electrically pumped lasers with the widely acknowledged assumption that optically excited charge carriers relax to the band edge through an ultrafast process. However, the characteristically slow carrier cooling in perovskites challenges this assumption. Here, we investigate the optical pumping of state-of-the-art bromide- and iodine-based perovskites. We find that the threshold decreases by one order of magnitude with decreasing excitation energy from 3.10 eV to 2.48 eV for methylammonium lead bromide perovskite (MAPbBr3), indicating that the low-energy photon excitation facilitates faster cooling and hence enables efficient carrier accumulation for population inversion. Our results are then interpreted due to the coupling of phonon scattering in connection with the band structure of perovskites. This effect is further verified in the two-photon pumping process, where the carriers relax to the band edge with a smaller difference in phonon momentum that speeds up the carrier cooling process. Furthermore, by extrapolating the optical pumping threshold to the band edge excitation as an analog of the electrical carrier injection to the perovskite, we obtain a critical threshold carrier density of ∼1.9 × 1017 cm-3, which is one order of magnitude lower than that estimated from the conventional approach. Our work thus highlights the feasibility of metal halide perovskites for electrically pumped lasers.

8.
Nat Commun ; 13(1): 3620, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750885

ABSTRACT

Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-ß, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.


Subject(s)
Endothelial Cells , Microglia , Animals , Microglia/metabolism , Phenotype , Regulon/genetics , Single-Cell Analysis , Swine , Transcriptome
9.
BMC Biol ; 20(1): 25, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35073880

ABSTRACT

BACKGROUND: There is a need for functional genome-wide annotation of the protein-coding genes to get a deeper understanding of mammalian biology. Here, a new annotation strategy is introduced based on dimensionality reduction and density-based clustering of whole-body co-expression patterns. This strategy has been used to explore the gene expression landscape in pig, and we present a whole-body map of all protein-coding genes in all major pig tissues and organs. RESULTS: An open-access pig expression map ( www.rnaatlas.org ) is presented based on the expression of 350 samples across 98 well-defined pig tissues divided into 44 tissue groups. A new UMAP-based classification scheme is introduced, in which all protein-coding genes are stratified into tissue expression clusters based on body-wide expression profiles. The distribution and tissue specificity of all 22,342 protein-coding pig genes are presented. CONCLUSIONS: Here, we present a new genome-wide annotation strategy based on dimensionality reduction and density-based clustering. A genome-wide resource of the transcriptome map across all major tissues and organs in pig is presented, and the data is available as an open-access resource ( www.rnaatlas.org ), including a comparison to the expression of human orthologs.


Subject(s)
Genome , Genomics , Animals , Gene Expression Profiling , Mammals , Molecular Sequence Annotation , Organ Specificity , Swine/genetics , Transcriptome
10.
Sci Adv ; 7(31)2021 07.
Article in English | MEDLINE | ID: mdl-34321199

ABSTRACT

Advances in molecular profiling have opened up the possibility to map the expression of genes in cells, tissues, and organs in the human body. Here, we combined single-cell transcriptomics analysis with spatial antibody-based protein profiling to create a high-resolution single-cell type map of human tissues. An open access atlas has been launched to allow researchers to explore the expression of human protein-coding genes in 192 individual cell type clusters. An expression specificity classification was performed to determine the number of genes elevated in each cell type, allowing comparisons with bulk transcriptomics data. The analysis highlights distinct expression clusters corresponding to cell types sharing similar functions, both within the same organs and between organs.


Subject(s)
Proteome , Transcriptome , Antibodies/metabolism , Gene Expression Profiling , Humans , Proteome/metabolism , Proteomics
11.
J Phys Chem Lett ; 12(26): 6041-6047, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34165316

ABSTRACT

Bandgap tuning through mixing halide anions is one of the most attractive features for metal halide perovskites. However, mixed halide perovskites usually suffer from phase segregation under electrical biases. Herein, we obtain high-performance and color-stable blue perovskite LEDs (PeLEDs) based on mixed bromide/chloride three-dimensional (3D) structures. We demonstrate that the color instability of CsPb(Br1-xClx)3 PeLEDs results from surface defects at perovskite grain boundaries. By effective defect passivation, we achieve color-stable blue electroluminescence from CsPb(Br1-xClx)3 PeLEDs, with maximum external quantum efficiencies of up to 4.5% and high luminance of up to 5351 cd m-2 in the sky-blue region (489 nm). Our work provides new insights into the color instability issue of mixed halide perovskites and can spur new development of high-performance and color-stable blue PeLEDs.

12.
Cancer Res ; 81(9): 2545-2555, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33574091

ABSTRACT

Malignant cutaneous melanoma is one of the most common cancers in young adults. During the last decade, targeted and immunotherapies have significantly increased the overall survival of patients with malignant cutaneous melanoma. Nevertheless, disease progression is common, and a lack of predictive biomarkers of patient response to therapy hinders individualized treatment strategies. To address this issue, we performed a longitudinal study using an unbiased proteomics approach to identify and quantify proteins in plasma both before and during treatment from 109 patients treated with either targeted or immunotherapy. Linear modeling and machine learning approaches identified 43 potential prognostic and predictive biomarkers. A reverse correlation between apolipoproteins and proteins related to inflammation was observed. In the immunotherapy group, patients with low pretreatment expression of apolipoproteins and high expression of inflammation markers had shorter progression-free survival. Similarly, increased expression of LDHB during treatment elicited a significant impact on response to immunotherapy. Overall, we identified potential common and treatment-specific biomarkers in malignant cutaneous melanoma, paving the way for clinical use of these biomarkers following validation on a larger cohort. SIGNIFICANCE: This study identifies a potential biomarker panel that could improve the selection of therapy for patients with cutaneous melanoma.


Subject(s)
Apolipoproteins/blood , C-Reactive Protein/analysis , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/blood , Melanoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proteome/analysis , Serum Amyloid A Protein/analysis , Skin Neoplasms/blood , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Prognosis , Progression-Free Survival , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Young Adult , Melanoma, Cutaneous Malignant
13.
Nat Commun ; 12(1): 361, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33441549

ABSTRACT

Bright and efficient blue emission is key to further development of metal halide perovskite light-emitting diodes. Although modifying bromide/chloride composition is straightforward to achieve blue emission, practical implementation of this strategy has been challenging due to poor colour stability and severe photoluminescence quenching. Both detrimental effects become increasingly prominent in perovskites with the high chloride content needed to produce blue emission. Here, we solve these critical challenges in mixed halide perovskites and demonstrate spectrally stable blue perovskite light-emitting diodes over a wide range of emission wavelengths from 490 to 451 nanometres. The emission colour is directly tuned by modifying the halide composition. Particularly, our blue and deep-blue light-emitting diodes based on three-dimensional perovskites show high EQE values of 11.0% and 5.5% with emission peaks at 477 and 467 nm, respectively. These achievements are enabled by a vapour-assisted crystallization technique, which largely mitigates local compositional heterogeneity and ion migration.

14.
Pediatr Res ; 89(3): 604-612, 2021 02.
Article in English | MEDLINE | ID: mdl-32330929

ABSTRACT

BACKGROUND: Preterm birth and its complications are the primary cause of death among children under the age of 5. Among the survivors, morbidity both perinatally and later in life is common. The dawn of novel technical platforms for comprehensive and sensitive analysis of protein profiles in blood has opened up new possibilities to study both health and disease with significant clinical accuracy, here used to study the preterm infant and the physiological changes of the transition from intrauterine to extrauterine life. METHODS: We have performed in-depth analysis of the protein profiles of 14 extremely preterm infants using longitudinal sampling. Medical variables were integrated with extensive profiling of 448 unique protein targets. RESULTS: The preterm infants have a distinct unified protein profile in blood directly at birth regardless of clinical background; however, the pattern changed profoundly postnatally, expressing more diverse profiles only 1 week later and further on up to term-equivalent age. Clusters of proteins depending on temporal trend were identified. CONCLUSION: The protein profiles and the temporal trends here described will contribute to the understanding of the physiological changes in the intrauterine-extrauterine transition, which is essential to adjust early-in-life interventions to prone a normal development in the vulnerable preterm infants. IMPACT: We have performed longitudinal and in-depth analysis of the protein profiles of 14 extremely preterm infants using a novel multiplex protein analysis platform. The preterm infants had a distinct unified protein profile in blood directly at birth regardless of clinical background. The pattern changed dramatically postnatally, expressing more diverse profiles only 1 week later and further on up to term-equivalent age. Certain clusters of proteins were identified depending on their temporal trend, including several liver and immune proteins. The study contributes to the understanding of the physiological changes in the intrauterine-extrauterine transition.


Subject(s)
Blood Proteins/chemistry , Infant, Extremely Premature/blood , Cluster Analysis , Female , Gene Expression Profiling , Gestational Age , Humans , Infant, Extremely Premature/growth & development , Infant, Newborn , Longitudinal Studies , Male , Placenta/metabolism , Pregnancy , Premature Birth , Proteome , Sweden
15.
Ecotoxicol Environ Saf ; 207: 111523, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120279

ABSTRACT

The textile industry, while of major importance in the world economy, is a toxic industry utilizing and emitting thousands of chemical substances into the aquatic environment. The aim of this project was to study the potentially harmful effects associated with the leaching of chemical residues from three different types of textiles: sportswear, children's bath towels, and denim using different fish models (cell lines, fish larvae and juvenile fish). A combination of in vitro and in vivo test systems was used. Numerous biomarkers, ranging from gene expression, cytotoxicity and biochemical analysis to behavior, were measured to detect effects of leached chemicals. Principle findings indicate that leachates from all three types of textiles induced cytotoxicity on fish cell lines (RTgill-W1). Leachates from sportswear and towels induced mortality in zebrafish embryos, and chemical residues from sportswear reduced locomotion responses in developing larval fish. Sportswear leachate increased Cyp1a mRNA expression and EROD activity in liver of exposed brown trout. Leachates from towels induced EROD activity and VTG in rainbow trout, and these effects were mitigated by the temperature of the extraction process. All indicators of toxicity tested showed that exposure to textile leachate can cause adverse reactions in fish. These findings suggested that chemical leaching from textiles from domestic households could pose an ecotoxicological threat to the health of the aquatic environment.


Subject(s)
Oncorhynchus mykiss/physiology , Textile Industry , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animals , Ecotoxicology , Gene Expression , Liver/drug effects , Textiles
16.
Nat Commun ; 11(1): 4487, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32900998

ABSTRACT

An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies and immune cell profiling, complemented with gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.


Subject(s)
Healthy Aging/metabolism , Metabolome , Proteome/metabolism , Aged , Cohort Studies , Female , Healthy Aging/genetics , Healthy Volunteers , Humans , Lipidomics , Longitudinal Studies , Male , Metabolomics , Middle Aged , Precision Medicine , Prospective Studies , Proteomics , Sweden , Transcriptome
17.
J Proteome Res ; 19(12): 4815-4825, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32820635

ABSTRACT

Spike-in of standards of known concentrations used in proteomics-based workflows is an attractive approach for both accurate and precise multiplexed protein quantification. Here, a quantitative method based on targeted proteomics analysis of plasma proteins using isotope-labeled recombinant standards originating from the Human Protein Atlas project has been established. The standards were individually quantified prior to being employed in the final multiplex assay. The assays are mainly directed toward actively secreted proteins produced in the liver, but may also originate from other parts of the human body. This study included 21 proteins classified by the FDA as either drug targets or approved clinical protein biomarkers. We describe the use of this multiplex assay for profiling a well-defined human cohort with sample collection spanning over a one-year period. Samples were collected at four different time points, which allowed for a longitudinal analysis to assess the variable plasma proteome within individuals. Two assays toward APOA1 and APOB had available clinical data, and the two assays were benchmarked against each other. The clinical assay is based on antibodies and shows high correlation between the two orthogonal methods, suggesting that targeted proteomics with highly parallel, multiplex analysis is an attractive alternative to antibody-based protein assays.


Subject(s)
Proteome , Proteomics , Blood Proteins , Humans , Isotope Labeling , Recombinant Proteins/genetics
18.
Genome Med ; 12(1): 53, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576278

ABSTRACT

BACKGROUND: The human plasma proteome is important for many biological processes and targets for diagnostics and therapy. It is therefore of great interest to understand the interplay of genetic and environmental factors to determine the specific protein levels in individuals and to gain a deeper insight of the importance of genetic architecture related to the individual variability of plasma levels of proteins during adult life. METHODS: We have combined whole-genome sequencing, multiplex plasma protein profiling, and extensive clinical phenotyping in a longitudinal 2-year wellness study of 101 healthy individuals with repeated sampling. Analyses of genetic and non-genetic associations related to the variability of blood levels of proteins in these individuals were performed. RESULTS: The analyses showed that each individual has a unique protein profile, and we report on the intra-individual as well as inter-individual variation for 794 plasma proteins. A genome-wide association study (GWAS) using 7.3 million genetic variants identified by whole-genome sequencing revealed 144 independent variants across 107 proteins that showed strong association (P < 6 × 10-11) between genetics and the inter-individual variability on protein levels. Many proteins not reported before were identified (67 out of 107) with individual plasma level affected by genetics. Our longitudinal analysis further demonstrates that these levels are stable during the 2-year study period. The variability of protein profiles as a consequence of environmental factors was also analyzed with focus on the effects of weight loss and infections. CONCLUSIONS: We show that the adult blood levels of many proteins are determined at birth by genetics, which is important for efforts aimed to understand the relationship between plasma proteome profiles and human biology and disease.


Subject(s)
Blood Proteins/genetics , Aged , Cohort Studies , Female , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , Male , Middle Aged , Proteome , Whole Genome Sequencing
19.
Science ; 367(6482)2020 03 06.
Article in English | MEDLINE | ID: mdl-32139519

ABSTRACT

The brain, with its diverse physiology and intricate cellular organization, is the most complex organ of the mammalian body. To expand our basic understanding of the neurobiology of the brain and its diseases, we performed a comprehensive molecular dissection of 10 major brain regions and multiple subregions using a variety of transcriptomics methods and antibody-based mapping. This analysis was carried out in the human, pig, and mouse brain to allow the identification of regional expression profiles, as well as to study similarities and differences in expression levels between the three species. The resulting data have been made available in an open-access Brain Atlas resource, part of the Human Protein Atlas, to allow exploration and comparison of the expression of individual protein-coding genes in various parts of the mammalian brain.


Subject(s)
Atlases as Topic , Brain/physiology , Gene Expression Regulation , Nerve Tissue Proteins/genetics , Transcriptome , Animals , Datasets as Topic , Female , Humans , Male , Mice , Mice, Inbred C57BL , Organ Specificity/genetics , Species Specificity , Swine
20.
Science ; 366(6472)2019 12 20.
Article in English | MEDLINE | ID: mdl-31857451

ABSTRACT

Blood is the predominant source for molecular analyses in humans, both in clinical and research settings. It is the target for many therapeutic strategies, emphasizing the need for comprehensive molecular maps of the cells constituting human blood. In this study, we performed a genome-wide transcriptomic analysis of protein-coding genes in sorted blood immune cell populations to characterize the expression levels of each individual gene across the blood cell types. All data are presented in an interactive, open-access Blood Atlas as part of the Human Protein Atlas and are integrated with expression profiles across all major tissues to provide spatial classification of all protein-coding genes. This allows for a genome-wide exploration of the expression profiles across human immune cell populations and all major human tissues and organs.


Subject(s)
Blood Cells/metabolism , Transcriptome , Gene Expression Profiling , Genome-Wide Association Study , Humans , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...