Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
iScience ; 27(9): 110703, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39252977

ABSTRACT

Cystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficits in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, our pilot study of 40 CF patients reveals a loss of small pulmonary blood vessels in patients with severe lung disease. Using a vessel-on-a-chip model, we establish a shear-stress-dependent mechanism of endothelial barrier failure in CF involving TRPV4, a mechanosensitive channel. Furthermore, we demonstrate that CFTR deficiency downregulates the function of PIEZO1, another mechanosensitive channel involved in angiogenesis and wound repair, and exacerbates loss of small pulmonary blood vessel. We also show that CFTR directly interacts with PIEZO1 and enhances its function. Our study identifies key cellular targets to mitigate loss of small pulmonary blood vessels in CF.

2.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948703

ABSTRACT

Background: Metabolic remodeling is a hallmark of the failing heart. Oncometabolic stress during cancer increases the activity and abundance of the ATP-dependent citrate lyase (ACL, Acly ), which promotes histone acetylation and cardiac adaptation. ACL is critical for the de novo synthesis of lipids, but how these metabolic alterations contribute to cardiac structural and functional changes remains unclear. Methods: We utilized human heart tissue samples from healthy donor hearts and patients with hypertrophic cardiomyopathy. Further, we used CRISPR/Cas9 gene editing to inactivate Acly in cardiomyocytes of MyH6-Cas9 mice. In vivo, positron emission tomography and ex vivo stable isotope tracer labeling were used to quantify metabolic flux changes in response to the loss of ACL. We conducted a multi-omics analysis using RNA-sequencing and mass spectrometry-based metabolomics and proteomics. Experimental data were integrated into computational modeling using the metabolic network CardioNet to identify significantly dysregulated metabolic processes at a systems level. Results: Here, we show that in mice, ACL drives metabolic adaptation in the heart to sustain contractile function, histone acetylation, and lipid modulation. Notably, we show that loss of ACL increases glucose oxidation while maintaining fatty acid oxidation. Ex vivo isotope tracing experiments revealed a reduced efflux of glucose-derived citrate from the mitochondria into the cytosol, confirming that citrate is required for reductive metabolism in the heart. We demonstrate that YAP inactivation facilitates ACL deficiency. Computational flux analysis and integrative multi-omics analysis indicate that loss of ACL induces alternative isocitrate dehydrogenase 1 flux to compensate. Conclusions: This study mechanistically delineates how cardiac metabolism compensates for suppressed citrate metabolism in response to ACL loss and uncovers metabolic vulnerabilities in the heart.

3.
Circ Res ; 134(12): 1824-1840, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843291

ABSTRACT

Immunometabolism is an emerging field at the intersection of immunology and metabolism. Immune cell activation plays a critical role in the pathogenesis of cardiovascular diseases and is integral for regeneration during cardiac injury. We currently possess a limited understanding of the processes governing metabolic interactions between immune cells and cardiomyocytes. The impact of this intercellular crosstalk can manifest as alterations to the steady state flux of metabolites and impact cardiac contractile function. Although much of our knowledge is derived from acute inflammatory response, recent work emphasizes heterogeneity and flexibility in metabolism between cardiomyocytes and immune cells during pathological states, including ischemic, cardiometabolic, and cancer-associated disease. Metabolic adaptation is crucial because it influences immune cell activation, cytokine release, and potential therapeutic vulnerabilities. This review describes current concepts about immunometabolic regulation in the heart, focusing on intercellular crosstalk and intrinsic factors driving cellular regulation. We discuss experimental approaches to measure the cardio-immunologic crosstalk, which are necessary to uncover unknown mechanisms underlying the immune and cardiac interface. Deeper insight into these axes holds promise for therapeutic strategies that optimize cardioimmunology crosstalk for cardiac health.


Subject(s)
Myocytes, Cardiac , Humans , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/immunology , Energy Metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/immunology , Myocardium/metabolism , Myocardium/immunology , Myocardium/pathology
4.
Mol Metab ; 86: 101969, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908793

ABSTRACT

OBJECTIVES: Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss. METHODS: We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling. RESULTS: D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle. CONCLUSIONS: Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.


Subject(s)
Autophagy , Glutarates , Muscle, Skeletal , Signal Transduction , Animals , Mice , Muscle, Skeletal/metabolism , Male , Glutarates/metabolism , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Cachexia/metabolism , Female , Sirtuin 1/metabolism , Sirtuin 1/genetics , Mice, Inbred C57BL
5.
Nat Commun ; 15(1): 2498, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509063

ABSTRACT

T cell-based immunotherapies have exhibited promising outcomes in tumor control; however, their efficacy is limited in immune-excluded tumors. Cancer-associated fibroblasts (CAFs) play a pivotal role in shaping the tumor microenvironment and modulating immune infiltration. Despite the identification of distinct CAF subtypes using single-cell RNA-sequencing (scRNA-seq), their functional impact on hindering T-cell infiltration remains unclear, particularly in soft-tissue sarcomas (STS) characterized by low response rates to T cell-based therapies. In this study, we characterize the STS microenvironment using murine models (in female mice) with distinct immune composition by scRNA-seq, and identify a subset of CAFs we termed glycolytic cancer-associated fibroblasts (glyCAF). GlyCAF rely on GLUT1-dependent expression of CXCL16 to impede cytotoxic T-cell infiltration into the tumor parenchyma. Targeting glycolysis decreases T-cell restrictive glyCAF accumulation at the tumor margin, thereby enhancing T-cell infiltration and augmenting the efficacy of chemotherapy. These findings highlight avenues for combinatorial therapeutic interventions in sarcomas and possibly other solid tumors. Further investigations and clinical trials are needed to validate these potential strategies and translate them into clinical practice.


Subject(s)
Cancer-Associated Fibroblasts , Sarcoma , Soft Tissue Neoplasms , Female , Animals , Mice , Drug Resistance, Neoplasm , Sarcoma/drug therapy , Sarcoma/genetics , T-Lymphocytes, Cytotoxic , Tumor Microenvironment , Fibroblasts
6.
Curr Opin Cardiol ; 39(3): 138-147, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38386340

ABSTRACT

PURPOSE OF REVIEW: The relationship between metabolism and cardiovascular diseases is complex and bidirectional. Cardiac cells must adapt metabolic pathways to meet biosynthetic demands and energy requirements to maintain contractile function. During cancer, this homeostasis is challenged by the increased metabolic demands of proliferating cancer cells. RECENT FINDINGS: Tumors have a systemic metabolic impact that extends beyond the tumor microenvironment. Lipid metabolism is critical to cancer cell proliferation, metabolic adaptation, and increased cardiovascular risk. Metabolites serve as signals which provide insights for diagnosis and prognosis in cardio-oncology patients. SUMMARY: Metabolic processes demonstrate a complex relationship between cancer cell states and cardiovascular remodeling with potential for therapeutic interventions.


Subject(s)
Heart Diseases , Neoplasms , Humans , Neoplasms/complications , Neoplasms/drug therapy , Metabolic Networks and Pathways , Lipid Metabolism , Tumor Microenvironment
7.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014251

ABSTRACT

Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes, that increase myocyte energy demand and lead to cardiac hypertrophy. But it is unknown whether a common metabolic trait underlies the cardiac phenotype at early disease stage. This study characterized two HCM mouse models (R92W-TnT, R403Q-MyHC) that demonstrate differences in mitochondrial function at early disease stage. Using a combination of cardiac phenotyping, transcriptomics, mass spectrometry-based metabolomics and computational modeling, we discovered allele-specific differences in cardiac structure/function and metabolic changes. TnT-mutant hearts had impaired energy substrate metabolism and increased phospholipid remodeling compared to MyHC-mutants. TnT-mutants showed increased incorporation of saturated fatty acid residues into ceramides, cardiolipin, and increased lipid peroxidation, that could underlie allele-specific differences in mitochondrial function and cardiomyopathy.

8.
J Am Soc Mass Spectrom ; 34(11): 2567-2574, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37812744

ABSTRACT

Several analytical challenges make it difficult to accurately measure coenzyme A (CoA) metaboforms, including insufficient stability and a lack of available metabolite standards. Consequently, our understanding of CoA biology and the modulation of human diseases may be nascent. CoA's serve as lipid precursors, energy intermediates, and mediators of post-translational modifications of proteins. Here, we present a liquid chromatography-mass spectrometry (LC-MS) approach to measure malonyl-CoA, acetyl-CoA, and succinyl-CoA in complex biological samples. Additionally, we evaluated workflows to increase sample stability. We used reference standards to optimize CoA assay sensitivity and test CoA metabolite stability as a function of the reconstitution solvent. We show that using glass instead of plastic sample vials decreases CoA signal loss and improves the sample stability. We identify additives that improve CoA stability and facilitate accurate analysis of CoA species across large sample sets. We apply our optimized workflow to biological samples of skeletal muscle cells cultured under hypoxic and normoxia conditions. Together, our workflow improves the detection and identification of CoA species through targeted analysis in complex biological samples.


Subject(s)
Acyl Coenzyme A , Malonyl Coenzyme A , Humans , Malonyl Coenzyme A/metabolism , Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/chemistry , Acyl Coenzyme A/metabolism , Muscle Cells/chemistry , Muscle Cells/metabolism
9.
bioRxiv ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37292906

ABSTRACT

The developing mammalian heart undergoes an important metabolic shift from glycolysis toward mitochondrial oxidation, such that oxidative phosphorylation defects may present with cardiac abnormalities. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mice with systemic loss of the mitochondrial citrate carrier SLC25A1. Slc25a1 null embryos displayed impaired growth, cardiac malformations, and aberrant mitochondrial function. Importantly, Slc25a1 haploinsufficient embryos, which are overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 dose-dependent effects. Supporting clinical relevance, we found a near-significant association between ultrarare human pathogenic SLC25A1 variants and pediatric congenital heart disease. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of PPARγ to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of ventricular morphogenesis and cardiac metabolic maturation and suggests a role in congenital heart disease.

10.
J Mol Cell Cardiol ; 171: 71-80, 2022 10.
Article in English | MEDLINE | ID: mdl-35777454

ABSTRACT

Cancer and cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic remodeling is a hallmark of both cancer and the failing heart. Tumors reprogram metabolism to optimize nutrient utilization and meet increased demands for energy provision, biosynthetic pathways, and proliferation. Shared risk factors for cancer and CVDs suggest intersecting mechanisms for disease pathogenesis and progression. In this review, we aim to highlight the role of metabolic remodeling in cancer and its potential to impair cardiac function. Understanding these mechanisms will help us develop biomarkers, better therapies, and identify patients at risk of developing heart disease after surviving cancer.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Neoplasms , Cardiovascular Diseases/complications , Energy Metabolism , Heart Diseases/etiology , Humans
11.
Nat Rev Cardiol ; 19(6): 414-425, 2022 06.
Article in English | MEDLINE | ID: mdl-35440740

ABSTRACT

Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Neoplasms , Cardiotoxicity , Cardiovascular Diseases/etiology , Heart , Humans
12.
Sci Rep ; 12(1): 1111, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064159

ABSTRACT

Preeclampsia is a cardiovascular pregnancy complication characterised by new onset hypertension and organ damage or intrauterine growth restriction. It is one of the leading causes of maternal and fetal mortality in pregnancy globally. Short of pre-term delivery of the fetus and placenta, treatment options are limited. Consequently, preeclampsia leads to increased cardiovascular disease risk in both mothers and offspring later in life. Here we aim to examine the impact of the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia on the maternal cardiovascular system, placental and fetal heart metabolism. The surgical RUPP model was induced in pregnant rats by applying silver clips around the aorta and uterine arteries on gestational day 14, resulting in ~ 40% uterine blood flow reduction. The experiment was terminated on gestational day 19 and metabolomic profile of placentae, maternal and fetal hearts analysed using high-resolution 1H NMR spectroscopy. Impairment of uterine perfusion in RUPP rats caused placental and cardiac hypoxia and a series of metabolic adaptations: altered energetics, carbohydrate, lipid and amino acid metabolism of placentae and maternal hearts. Comparatively, the fetal metabolic phenotype was mildly affected. Nevertheless, long-term effects of these changes in both mothers and the offspring should be investigated further in the future.


Subject(s)
Hypoxia/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Uterus/blood supply , Animals , Blood Pressure/physiology , Computer Simulation , Disease Models, Animal , Female , Fetal Heart/metabolism , Humans , Hypoxia/physiopathology , Metabolomics , Models, Biological , Placenta/blood supply , Placental Circulation/physiology , Pre-Eclampsia/physiopathology , Pregnancy , Proton Magnetic Resonance Spectroscopy , Rats , Uterus/physiology
13.
Front Cardiovasc Med ; 8: 734364, 2021.
Article in English | MEDLINE | ID: mdl-34859064

ABSTRACT

Although metabolic remodeling during cardiovascular diseases has been well-recognized for decades, the recent development of analytical platforms and mathematical tools has driven the emergence of assessing cardiac metabolism using tracers. Metabolism is a critical component of cellular functions and adaptation to stress. The pathogenesis of cardiovascular disease involves metabolic adaptation to maintain cardiac contractile function even in advanced disease stages. Stable-isotope tracer measurements are a powerful tool for measuring flux distributions at the whole organism level and assessing metabolic changes at a systems level in vivo. The goal of this review is to summarize techniques and concepts for in vivo or ex vivo stable isotope labeling in cardiovascular research, to highlight mathematical concepts and their limitations, to describe analytical methods at the tissue and single-cell level, and to discuss opportunities to leverage metabolic models to address important mechanistic questions relevant to all patients with cardiovascular disease.

14.
JACC Basic Transl Sci ; 6(8): 705-718, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34466757

ABSTRACT

An important priority in the cardiovascular care of oncology patients is to reduce morbidity and mortality, and improve the quality of life in cancer survivors through cross-disciplinary efforts. The rate of survival in cancer patients has improved dramatically over the past decades. Nonetheless, survivors may be more likely to die from cardiovascular disease in the long term, secondary, not only to the potential toxicity of cancer therapeutics, but also to the biology of cancer. In this context, efforts from basic and translational studies are crucial to understanding the molecular mechanisms causal to cardiovascular disease in cancer patients and survivors, and identifying new therapeutic targets that may prevent and treat both diseases. This review aims to highlight our current understanding of the metabolic interaction between cancer and the heart, including potential therapeutic targets. An overview of imaging techniques that can support both research studies and clinical management is also provided. Finally, this review highlights opportunities and challenges that are necessary to advance our understanding of metabolism in the context of cardio-oncology.

15.
J Mol Cell Cardiol ; 158: 115-127, 2021 09.
Article in English | MEDLINE | ID: mdl-34081952

ABSTRACT

RATIONALE: The nutrient sensing mechanistic target of rapamycin complex 1 (mTORC1) and its primary inhibitor, tuberin (TSC2), are cues for the development of cardiac hypertrophy. The phenotype of mTORC1 induced hypertrophy is unknown. OBJECTIVE: To examine the impact of sustained mTORC1 activation on metabolism, function, and structure of the adult heart. METHODS AND RESULTS: We developed a mouse model of inducible, cardiac-specific sustained mTORC1 activation (mTORC1iSA) through deletion of Tsc2. Prior to hypertrophy, rates of glucose uptake and oxidation, as well as protein and enzymatic activity of glucose 6-phosphate isomerase (GPI) were decreased, while intracellular levels of glucose 6-phosphate (G6P) were increased. Subsequently, hypertrophy developed. Transcript levels of the fetal gene program and pathways of exercise-induced hypertrophy increased, while hypertrophy did not progress to heart failure. We therefore examined the hearts of wild-type mice subjected to voluntary physical activity and observed early changes in GPI, followed by hypertrophy. Rapamycin prevented these changes in both models. CONCLUSION: Activation of mTORC1 in the adult heart triggers the development of a non-specific form of hypertrophy which is preceded by changes in cardiac glucose metabolism.


Subject(s)
Cardiomegaly/metabolism , Gene Knockdown Techniques/methods , Glucose/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction/genetics , Animals , Cardiomegaly/diet therapy , Cardiomegaly/genetics , Cardiomegaly/prevention & control , Cells, Cultured , Diet/methods , Disease Models, Animal , Enzyme Activation/genetics , Glucose-6-Phosphatase/metabolism , Isomerases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Phosphorylation/genetics , Sirolimus/administration & dosage , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism
16.
Nat Commun ; 11(1): 4337, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859897

ABSTRACT

Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 µM ouabain 100 nM blebbistatin) or chronic myocardial Nai load (PLM3SA mouse) are causally linked to metabolic remodelling and whether the failing heart shares a common Na-mediated metabolic 'fingerprint'. Control (PLMWT), transgenic (PLM3SA), ouabain-treated and hypertrophied Langendorff-perfused mouse hearts are studied by 23Na, 31P, 13C NMR followed by 1H-NMR metabolomic profiling. Elevated Nai leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorates the metabolic changes. In silico modelling indicates altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Nai overload or inhibition of Na/Camito may be a new approach to ameliorate metabolic dysregulation in heart failure.


Subject(s)
Cellular Reprogramming/physiology , Cytoplasm/metabolism , Heart Failure/metabolism , Myocardium/metabolism , Sodium/metabolism , Animals , Disease Models, Animal , Energy Metabolism , Gene Knock-In Techniques , Heart , Hypertrophy , Isolated Heart Preparation , Male , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Rats, Wistar , Sodium/blood , Sodium-Calcium Exchanger/drug effects , Thiazepines/pharmacology
17.
Circ Res ; 126(1): 60-74, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31698999

ABSTRACT

RATIONALE: Metabolic and structural remodeling is a hallmark of heart failure. This remodeling involves activation of the mTOR (mammalian target of rapamycin) signaling pathway, but little is known on how intermediary metabolites are integrated as metabolic signals. OBJECTIVE: We investigated the metabolic control of cardiac glycolysis and explored the potential of glucose 6-phosphate (G6P) to regulate glycolytic flux and mTOR activation. METHODS AND RESULTS: We developed a kinetic model of cardiomyocyte carbohydrate metabolism, CardioGlyco, to study the metabolic control of myocardial glycolysis and G6P levels. Metabolic control analysis revealed that G6P concentration is dependent on phosphoglucose isomerase (PGI) activity. Next, we integrated ex vivo tracer studies with mathematical simulations to test how changes in glucose supply and glycolytic flux affect mTOR activation. Nutrient deprivation promoted a tight coupling between glucose uptake and oxidation, G6P reduction, and increased protein-protein interaction between hexokinase II and mTOR. We validated the in silico modeling in cultured adult mouse ventricular cardiomyocytes by modulating PGI activity using erythrose 4-phosphate. Inhibition of glycolytic flux at the level of PGI caused G6P accumulation, which correlated with increased mTOR activation. Using click chemistry, we labeled newly synthesized proteins and confirmed that inhibition of PGI increases protein synthesis. CONCLUSIONS: The reduction of PGI activity directly affects myocyte growth by regulating mTOR activation.


Subject(s)
Glucose-6-Phosphate Isomerase/antagonists & inhibitors , Glucose-6-Phosphate/metabolism , Myocardium/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Click Chemistry , Computer Simulation , Glucose/pharmacology , Glycolysis , Hexokinase/metabolism , Mice , Mitochondria, Heart/metabolism , Models, Biological , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Oxygen Consumption , Protein Biosynthesis/drug effects , Rats , Rats, Sprague-Dawley , Sugar Phosphates/pharmacology
18.
Front Cardiovasc Med ; 5: 71, 2018.
Article in English | MEDLINE | ID: mdl-29971237

ABSTRACT

Recent advances in cancer cell metabolism provide unprecedented opportunities for a new understanding of heart metabolism and may offer new approaches for the treatment of heart failure. Key questions driving the cancer field to understand how tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to the heart. Recent experimental and conceptual advances in cancer cell metabolism provide the cardiovascular field with the unique opportunity to target metabolism. This review compares cancer cell metabolism and cardiac metabolism with an emphasis on strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic benefit.

20.
J Mol Cell Cardiol ; 112: 95-103, 2017 11.
Article in English | MEDLINE | ID: mdl-28923351

ABSTRACT

Calcium plays an integral role to many cellular processes including contraction, energy metabolism, gene expression, and cell death. The inositol 1, 4, 5-trisphosphate receptor (IP3R) is a calcium channel expressed in cardiac tissue. There are three IP3R isoforms encoded by separate genes. In the heart, the IP3R-2 isoform is reported to being most predominant with regards to expression levels and functional significance. The functional roles of IP3R-1 and IP3R-3 in the heart are essentially unexplored despite measureable expression levels. Here we show that all three IP3Rs isoforms are expressed in both neonatal and adult rat ventricular cardiomyocytes, and in human heart tissue. The three IP3R proteins are expressed throughout the cardiomyocyte sarcoplasmic reticulum. Using isoform specific siRNA, we found that expression of all three IP3R isoforms are required for hypertrophic signaling downstream of endothelin-1 stimulation. Mechanistically, IP3Rs specifically contribute to activation of the hypertrophic program by mediating the positive inotropic effects of endothelin-1 and leading to downstream activation of nuclear factor of activated T-cells. Our findings highlight previously unidentified functions for IP3R isoforms in the heart with specific implications for hypertrophic signaling in animal models and in human disease.


Subject(s)
Cardiomegaly/metabolism , Hyperglycemia/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Animals , Animals, Newborn , Cardiomegaly/complications , Cardiomegaly/pathology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cells, Cultured , Cytosol/drug effects , Cytosol/metabolism , Endothelin-1/pharmacology , Heart Failure/complications , Heart Failure/pathology , Heart Ventricles/pathology , Hyperglycemia/pathology , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NFATC Transcription Factors/metabolism , Protein Isoforms/metabolism , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL