Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679660

ABSTRACT

The unacceptably high stroke rate associated with HeartMate 3 ventricular assist device (VAD) without signs of adherent pump thrombosis is hypothesized to be the result of the emboli produced by the inflow cannula, that are ingested and ejected from the pump. This in vitro and numerical study aimed to emulate the surface features and supraphysiological shear of a ventricular cannula to provide insight into their effect on thrombogenesis. Human whole blood was perfused at calibrated flow rates in a microfluidic channel to achieve shear rates 1000-7500 s-1, comparable to that experienced on the cannula. The channel contained periodic teeth representative of the rough sintered surface of the HeartMate 3 cannula. The deposition of fluorescently labeled platelets was visualized in real time and analyzed with a custom entity tracking algorithm. Numerical simulations of a multi-constituent thrombosis model were performed to simulate laminar blood flow in the channel. The sustained growth of adherent platelets was observed in all shear conditions ( p <  0.05). However, the greatest deposition was observed at the lower shear rates. The location of deposition with respect to the microfluidic teeth was also found to vary with shear rate. This was confirmed by CFD simulation. The entity tracking algorithm revealed the spatial variation of instances of embolic events. This result suggests that the sintered surface of the ventricular cannula may engender unstable thrombi with a greater likelihood of embolization at supraphysiological shear rates.

2.
Comput Methods Programs Biomed ; 247: 108090, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394788

ABSTRACT

BACKGROUND AND OBJECTIVE: Owing to the complexity of physics linked with blood flow and its associated phenomena, appropriate modeling of the multi-constituent rheology of blood is of primary importance. To this effect, various kinds of computational fluid dynamic models have been developed, each with merits and limitations. However, when additional physics like thrombosis and embolization is included within the framework of these models, computationally efficient scalable translation becomes very difficult. Therefore, this paper presents a homogenized two-phase blood flow framework with similar characteristics to a single fluid model but retains the flow resolution of a classical two-fluid model. The presented framework is validated against four different sets of experiments. METHODS: The two-phase model of blood presented here is based on the classical diffusion-flux framework. Diffusion flux models are known to be less computationally expensive than two-fluid multiphase models since the numerical implementation resembles single-phase flow models. Diffusion flux models typically use empirical slip velocity correlations to resolve the motion between phases. However, such correlations do not exist for blood. Therefore, a modified slip velocity equation is proposed, derived rigorously from the two-fluid governing equations. An additional drag law for red blood cells (RBCs) as a function of volume fraction is evaluated using a previously published cell-resolved solver. A new hematocrit-dependent expression for lift force on RBCs is proposed. The final governing equations are discretized and solved using the open-source software OpenFOAM. RESULTS: The framework is validated against four sets of experiments: (i) flow through a rectangular microchannel to validate RBC velocity profiles against experimental measurements and compare computed hematocrit distributions against previously reported simulation results (ii) flow through a sudden expansion microchannel for comparing experimentally obtained contours of hematocrit distributions and normalized cell-free region length obtained at different flowrates and inlet hematocrits, (iii) flow through two hyperbolic channels to evaluate model predictions of cell-free layer thickness, and (iv) flow through a microchannel that mimics crevices of a left ventricular assist device to predict hematocrit distributions observed experimentally. The simulation results exhibit good agreement with the results of all four experiments. CONCLUSION: The computational framework presented in this paper has the advantage of resolving the multiscale physics of blood flow while still leveraging numerical techniques used for solving single-phase flows. Therefore, it becomes an excellent candidate for addressing more complicated problems related to blood flow, such as modeling mechanical entrapment of RBCs within blood clots, predicting thrombus composition, and visualizing clot embolization.


Subject(s)
Erythrocytes , Hemodynamics , Blood Flow Velocity , Hematocrit , Computer Simulation , Models, Cardiovascular
3.
J Med Imaging (Bellingham) ; 9(4): 044006, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36043032

ABSTRACT

Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistration techniques have been proposed; however, available methods predominantly rely on time-consuming manual alignments or nontrivial feature extraction with limited clinical applicability. Addressing these issues, we present a fully automated, robust, nonrigid registration method, allowing for coregistering of multimodal tomographic vascular image datasets using luminal annotation as the sole alignment feature. Approach: Registration is carried out by the use of the registration metrics defined exclusively for lumens shapes. The framework is primarily broken down into two sequential parts: longitudinal and rotational registration. Both techniques are inherently nonrigid in nature to compensate for motion and acquisition artifacts in tomographic images. Results: Performance was evaluated across multimodal intravascular datasets, as well as in longitudinal cases assessing pre-/postinterventional coronary images. Low registration error in both datasets highlights method utility, with longitudinal registration errors-evaluated throughout the paired tomographic sequences-of 0.29 ± 0.14 mm ( < 2 longitudinal image frames) and 0.18 ± 0.16 mm ( < 1 frame) for multimodal and interventional datasets, respectively. Angular registration for the interventional dataset rendered errors of 7.7 ° ± 6.7 ° , and 29.1 ° ± 23.2 ° for the multimodal set. Conclusions: Satisfactory results across datasets, along with additional attributes such as the ability to avoid longitudinal over-fitting and correct nonlinear catheter rotation during nonrigid rotational registration, highlight the potential wide-ranging applicability of our presented coregistration method.

SELECTION OF CITATIONS
SEARCH DETAIL
...