Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Hortic Res ; 9: uhac009, 2022.
Article in English | MEDLINE | ID: mdl-35369130

ABSTRACT

Malate is a major contributor to the sourness of grape berries (Vitis spp.) and their products, such as wine. Excessive malate at maturity, commonly observed in wild Vitis grapes, is detrimental to grape and wine quality and complicates the introgression of valuable disease resistance and cold hardy genes through breeding. This study investigated an interspecific Vitis family that exhibited strong and stable variation in malate at ripeness for five years and tested the separate contribution of accumulation, degradation, and dilution to malate concentration in ripe fruit in the last year of study. Genotyping was performed using transferable rhAmpSeq haplotype markers, based on the Vitis collinear core genome. Three significant QTL for ripe fruit malate on chromosomes 1, 7, and 17, accounted for over two-fold and 6.9 g/L differences, and explained 40.6% of the phenotypic variation. QTL on chromosomes 7 and 17 were stable in all and in three out of five years, respectively. Variation in pre-veraison malate was the major contributor to variation in ripe fruit malate (39%), and based on two and five years of data, respectively, their associated QTL overlapped on chromosome 7, indicating a common genetic basis. However, use of transferable markers on a closely related Vitis family did not yield a common QTL across families. This suggests that diverse physiological mechanisms regulate the levels of this key metabolite in the Vitis genus, a conclusion supported by a review of over a dozen publications from the past decade, showing malate-associated genetic loci on all 19 chromosomes.

2.
Plants (Basel) ; 11(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35270166

ABSTRACT

Increased map density and transferability of markers are essential for the genetic analysis of fruit quality and stress tolerance in interspecific grapevine populations. We used 1449 GBS and 2000 rhAmpSeq markers to develop a dense map for an interspecific F2 population (VRS-F2) that was derived by selfing a single F1 from a Vitis riparia x 'Seyval blanc' cross. The resultant map contained 2519 markers spanning 1131.3 cM and was highly collinear with the Vitis vinifera 'PN40024' genome. Quantitative trait loci (QTL) for berry skin color and flower type were used to validate the map. Four rhAmpSeq transferable markers were identified that can be used in pairs (one pistillate and one hermaphroditic) to predict pistillate and hermaphrodite flower type with ≥99.7% accuracy. Total and individual anthocyanin diglucoside QTL mapped to chromosome 9 near a 5-O-GLUCOSYLTRANSFERASE candidate gene. Malic acid QTL were observed on chromosome 1 and 6 with two MALATE DEHYRDROGENASE CYTOPLASMIC 1 and ALUMINUM-ACTIVATED MALATE TRANSPORTER 2-LIKE (ALMT) candidate genes, respectively. Modeling malic acid identified a potential QTL on chromosome 8 with peak position in proximity of another ALMT. A first-ever reported QTL for the grassy smelling volatile (E)-2-hexenal was found on chromosome 2 with a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE candidate gene near peak markers.

3.
Hortic Res ; 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35184180

ABSTRACT

The foliage of the native grape species Vitis riparia and certain cold-hardy hybrid grapes are particularly susceptible to the insect pest phylloxera, Daktulosphaira vitifoliae Fitch. A previous study using a cold-hardy hybrid grape biparental F1 population (N~125) detected the first quantitative trait locus (QTL) for foliar resistance on chromosome 14, designated as resistance to Daktulosphaira vitifoliae 3 (Rdv3). This locus spans a ~7-Mbp (10-20 cM) region and is too wide for effective marker-assisted selection or identification of candidate genes. Therefore, we fine mapped the QTL using a larger F1 population, GE1783 (N~1023), and genome-wide rhAmpSeq haplotype markers. Through three selective phenotyping experiments replicated in the greenhouse, we screened 184 potential recombinants of GE1783 using a 0 to 7 severity rating scale among other phylloxera severity traits. A 500-kb fine mapped region at 4.8 Mbp on chromosome 14 was identified. The tightly linked rhAmpSeq marker 14_4805213 and flanking markers can be used for future marker-assisted breeding. This region contains 36 candidate genes with predicted functions in disease resistance (R genes and Bonzai genes) and gall formation (bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase). Disease resistance genes suggest a traditional R-gene-mediated resistance mechanism often accompanied by a hypersensitive response, which has been widely studied in the plant pathology field. A novel resistance mechanism, non-responsiveness to phylloxera gall formation is proposed as a function of the bifunctional dehydratase gene, which plays a role in gallic acid biosynthesis and is important in gall formation. This study has implications for improvement of foliar phylloxera resistance in cold-hardy hybrid germplasm and is a starting place to understand the mechanism of resistance in crops to gall-forming insects.

4.
Genes (Basel) ; 12(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34946911

ABSTRACT

Hydroxycinnamylated anthocyanins (or simply 'acylated anthocyanins') increase color stability in grape products, such as wine. Several genes that are relevant for anthocyanin acylation in grapes have been previously described; however, control of the degree of acylation in grapes is complicated by the lack of genetic markers quantitatively associated with this trait. To characterize the genetic basis of anthocyanin acylation in grapevine, we analyzed the acylation ratio in two closely related biparental families, Vitis rupestris B38 × 'Horizon' and 'Horizon' × Illinois 547-1, for 2 and 3 years, respectively. The acylation ratio followed a bimodal and skewed distribution in both families, with repeatability estimates larger than 0.84. Quantitative trait locus (QTL) mapping with amplicon-based markers (rhAmpSeq) identified a strong QTL from 'Horizon' on chromosome 3, near 15.85 Mb in both families and across years, explaining up to 85.2% of the phenotypic variance. Multiple candidate genes were identified in the 14.85-17.95 Mb interval, in particular, three copies of a gene encoding an acetyl-CoA-benzylalcohol acetyltransferase-like protein within the two most strongly associated markers. Additional population-specific QTLs were found in chromosomes 9, 10, 15, and 16; however, no candidate genes were described. The rhAmpSeq markers reported here, which were previously shown to be highly transferable among the Vitis genus, could be immediately implemented in current grapevine breeding efforts to control the degree of anthocyanin acylation and improve the quality of grapes and their products.


Subject(s)
Anthocyanins/chemistry , Chromosomes, Plant/genetics , Plant Proteins/metabolism , Quantitative Trait Loci , Vitis/genetics , Wine/analysis , Acylation , Chromosome Mapping , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , North America , Phenotype , Plant Proteins/genetics , Vitis/growth & development , Vitis/metabolism
5.
Front Plant Sci ; 12: 733899, 2021.
Article in English | MEDLINE | ID: mdl-34539723

ABSTRACT

Race-specific resistance loci, whether having qualitative or quantitative effects, present plant-breeding challenges for phenotypic selection and deciding which loci to select or stack with other resistance loci for improved durability. Previously, resistance to grapevine powdery mildew (GPM, caused by Erysiphe necator) was predicted to be conferred by at least three race-specific loci in the mapping family B37-28 × C56-11 segregating for GPM resistance from Vitis aestivalis. In this study, 9 years of vineyard GPM disease severity ratings plus a greenhouse and laboratory assays were genetically mapped, using a rhAmpSeq core genome marker platform with 2,000 local haplotype markers. A new qualitative resistance locus, named REN11, on the chromosome (Chr) 15 was found to be effective in nearly all (11 of 12) vineyard environments on leaves, rachis, berries, and most of the time (7 of 12) stems. REN11 was independently validated in a pseudo-testcross with the grandparent source of resistance, "Tamiami." Five other loci significantly predicted GPM severity on leaves in only one or two environments, which could indicate race-specific resistance or their roles in different timepoints in epidemic progress. Loci on Chr 8 and 9 reproducibly predicted disease severity on stems but not on other tissues and had additive effects with REN11 on the stems. The rhAmpSeq local haplotype sequences published in this study for REN11 and Chr 8 and 9 stem quantitative trait locus (QTL) can be used directly for marker-assisted selection or converted to SNP assays. In screening for REN11 in a diversity panel of 20,651 vines representing the diversity of Vitis, this rhAmpSeq haplotype had a false positive rate of 0.034% or less. The effects of the other foliar resistance loci detected in this study seem too unstable for genetic improvement regardless of quantitative effect size, whether due to race specificity or other environmental variables.

6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33837155

ABSTRACT

Hermaphroditic (perfect) flowers were a key trait in grapevine domestication, enabling a drastic increase in yields due to the efficiency of self-pollination in the domesticated grapevine (Vitis vinifera L. ssp. vinifera). In contrast, all extant wild Vitis species are dioecious, each plant having only male or female flowers. In this study, we identified the male (M) and female (f) haplotypes of the sex-determining region (SDR) in the wild grapevine species V. cinerea and confirmed the boundaries of the SDR. We also demonstrated that the SDR and its boundaries are precisely conserved across the Vitis genus using shotgun resequencing data of 556 wild and domesticated accessions from North America, East Asia, and Europe. A high linkage disequilibrium was found at the SDR in all wild grape species, while different recombination signatures were observed along the hermaphrodite (H) haplotype of 363 cultivated accessions, revealing two distinct H haplotypes, named H1 and H2. To further examine the H2 haplotype, we sequenced the genome of two grapevine cultivars, 'Riesling' and 'Chardonnay'. By reconstructing the first two H2 haplotypes, we estimated the divergence time between H1 and H2 haplotypes at ∼6 million years ago, which predates the domestication of grapevine (∼8,000 y ago). Our findings emphasize the important role of recombination suppression in maintaining dioecy in wild grape species and lend additional support to the hypothesis that at least two independent recombination events led to the reversion to hermaphroditism in grapevine.


Subject(s)
Evolution, Molecular , Flowers/genetics , Recombination, Genetic , Vitis/genetics , Flowers/physiology , Genotype , Vitis/physiology
7.
Front Plant Sci ; 12: 587640, 2021.
Article in English | MEDLINE | ID: mdl-33746993

ABSTRACT

Segregation for leaf trichome density was observed in a cold-hardy hybrid grape population GE1025 (N = ∼125, MN1264 × MN1246) that was previously used to detect a quantitative trait locus (QTL) underlying foliar phylloxera resistance on chromosome 14. Our hypothesis was that high trichome density was associated with resistance to phylloxera. Existing literature found trichome density QTL on chromosomes 1 and 15 using a hybrid grape population of "Horizon" × Illinois 547-1 and suggested a few candidate genes. To validate the reported QTL and our hypothesis, interval mapping was conducted in GE1025 with previous genotyping-by-sequencing (GBS) single nucleotide polymorphism (SNP) genotype data and phenotypic scores collected using a 0-6 trichome density scale at several leaf positions. Evaluations were done on replicated forced dormant cuttings in 2 years and on field-grown leaves in 1 year. There was no strong relationship between trichome density and phylloxera resistance except for a Pearson's correlation (r) of about -0.2 between a few trichome density traits and phylloxera severity traits at 2 and 3 weeks after infestation. Two genetic regions were repeatedly detected for multiple trichome density traits: from 10 to 20.7 Mbp (∼10 Mbp) on chromosome 1 for ribbon and simple density traits and from 2.4 to 8.9 Mbp on chromosome 10 for ribbon density traits, explaining 12.1-48.2 and 12.6-27.5% of phenotypic variation, respectively. To fine map, we genotyped a larger population, GE1783 (N = ∼1,023, MN1264 × MN1246), with conserved rhAmpSeq haplotype markers across multiple Vitis species and phenotyped 233 selected potential recombinants. Evaluations were conducted on field-grown leaves in a single year. The QTL for ribbon trichome density on adaxial vein and adaxial leaf and simple density on abaxial vein was fine mapped to 12.63-13.38 Mbp (747 kb) on chromosome 1. We found variations of MN1264 and MN1246 at candidate genes NAC transcription factor 29, EF-hand protein, and MYB140 in this region and three other surrounding candidate genes proposed previously. Even though no strong relationship between foliar phylloxera resistance and trichome density was found, this study validated and fine mapped a major QTL for trichome density using a cold-hardy hybrid grape population and shed light on a few candidate genes that have implications for different breeding programs.

8.
Nat Commun ; 11(1): 413, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964885

ABSTRACT

Transferable DNA markers are essential for breeding and genetics. Grapevine (Vitis) breeders utilize disease resistance alleles from congeneric species ~20 million years divergent, but existing Vitis marker platforms have cross-species transfer rates as low as 2%. Here, we apply a marker strategy targeting the inferred Vitis core genome. Incorporating seven linked-read de novo assemblies and three existing assemblies, the Vitis collinear core genome is estimated to converge at 39.8 Mb (8.67% of the genome). Adding shotgun genome sequences from 40 accessions enables identification of conserved core PCR primer binding sites flanking polymorphic haplotypes with high information content. From these target regions, we develop 2,000 rhAmpSeq markers as a PCR multiplex and validate the panel in four biparental populations spanning the diversity of the Vitis genus, showing transferability increases to 91.9%. This marker development strategy should be widely applicable for genetic studies in many taxa, particularly those ~20 million years divergent.


Subject(s)
Chromosome Mapping/methods , DNA, Plant/isolation & purification , Haplotypes , Sequence Analysis, DNA/methods , Vitis/genetics , Alleles , DNA, Plant/genetics , Genetic Markers/genetics , Genome, Plant , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing , Microsatellite Repeats/genetics , Phylogeny , Plant Breeding , Polymorphism, Single Nucleotide
9.
Front Plant Sci ; 10: 599, 2019.
Article in English | MEDLINE | ID: mdl-31156670

ABSTRACT

Amplicon sequencing (AmpSeq) is a practical, intuitive strategy with a semi-automated computational pipeline for analysis of highly multiplexed PCR-derived sequences. This genotyping platform is particularly cost-effective when multiplexing 96 or more samples with a few amplicons up to thousands of amplicons. Amplicons can target from a single nucleotide to the upper limit of the sequencing platform. The flexibility of AmpSeq's wet lab methods make it a tool of broad interest for diverse species, and AmpSeq excels in flexibility, high-throughput, low-cost, accuracy, and semi-automated analysis. Here we provide an open science framework procedure to output data out of an AmpSeq project, with an emphasis on the bioinformatics pipeline to generate SNPs, haplotypes and presence/absence variants in a set of diverse genotypes. Open-access tutorial datasets with actual data and a containerization open source software instance are provided to enable training in each of these genotyping applications. The pipelines presented here should be applicable to the analysis of various target-enriched (e.g., amplicon or sequence capture) Illumina sequence data.

10.
G3 (Bethesda) ; 7(4): 1157-1164, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28188181

ABSTRACT

Teosinte (Zea mays ssp. parviglumis) is the wild ancestor of modern maize (Zea mays ssp. mays). Teosinte contains greater genetic diversity compared with maize inbreds and landraces, but its use is limited by insufficient genetic resources to evaluate its value. A population of teosinte near isogenic lines (NILs) was previously developed to broaden the resources for genetic diversity of maize, and to discover novel alleles for agronomic and domestication traits. The 961 teosinte NILs were developed by backcrossing 10 geographically diverse parviglumis accessions into the B73 (reference genome inbred) background. The NILs were grown in two replications in 2009 and 2010 in Columbia, MO and Aurora, NY, respectively, and near infrared reflectance spectroscopy and nuclear magnetic resonance calibrations were developed and used to rapidly predict total kernel starch, protein, and oil content on a dry matter basis in bulk whole grains of teosinte NILs. Our joint-linkage quantitative trait locus (QTL) mapping analysis identified two starch, three protein, and six oil QTL, which collectively explained 18, 23, and 45% of the total variation, respectively. A range of strong additive allelic effects for kernel starch, protein, and oil content were identified relative to the B73 allele. Our results support our hypothesis that teosinte harbors stronger alleles for kernel composition traits than maize, and that teosinte can be exploited for the improvement of kernel composition traits in modern maize germplasm.


Subject(s)
Alleles , Quantitative Trait Loci/genetics , Seeds/genetics , Zea mays/genetics , Calibration , Chromosome Mapping , Chromosomes, Plant/genetics , Magnetic Resonance Spectroscopy , Plant Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Spectroscopy, Near-Infrared , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...