Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Clin. transl. oncol. (Print) ; 25(11): 3057-3072, 11 nov. 2023.
Article in English | IBECS | ID: ibc-226834

ABSTRACT

Triple-negative breast cancer (TNBC) is the most invasive molecular subtype of breast cancer (BC), accounting for about nearly 15% of all BC cases reported annually. The absence of the three major BC hormone receptors, Estrogen (ER), Progesterone (PR), and Human Epidermal Growth Factor 2 (HER2) receptor, accounts for the characteristic “Triple negative” phraseology. The absence of these marked receptors makes this cancer insensitive to classical endocrine therapeutic approaches. Hence, the available treatment options remain solemnly limited to only conventional realms of chemotherapy and radiation therapy. Moreover, these therapeutic regimes are often accompanied by numerous treatment side-effects that account for early distant metastasis, relapse, and shorter overall survival in TNBC patients. The rigorous ongoing research in the field of clinical oncology has identified certain gene-based selective tumor-targeting susceptibilities, which are known to account for the molecular fallacies and mutation-based genetic alterations that develop the progression of TNBC. One such promising approach is synthetic lethality, which identifies novel drug targets of cancer, from undruggable oncogenes or tumor-suppressor genes, which cannot be otherwise clasped by the conventional approaches of mutational analysis. Herein, a holistic scientific review is presented, to undermine the mechanisms of synthetic lethal (SL) interactions in TNBC, the epigenetic crosstalks encountered, the role of Poly (ADP-ribose) polymerase inhibitors (PARPi) in inducing SL interactions, and the limitations faced by the lethal interactors. Thus, the future predicament of synthetic lethal interactions in the advancement of modern translational TNBC research is assessed with specific emphasis on patient-specific personalized medicine (AU)


Subject(s)
Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Synthetic Lethal Mutations , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Mutation
2.
Funct Integr Genomics ; 23(3): 249, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474674

ABSTRACT

In plants, pathogen resistance is brought about by the binding of certain transcription factor (TF) proteins to the cis-elements of certain target genes. These cis-elements are present upstream in the motif of the promoters of each gene. This ensures the binding of a specific TF to a specific promoter, therefore regulating the expression of that gene. Therefore, the study of each promoter sequence of all the rice genes would help identify the target genes of a specific TF. Rice 1 kb upstream promoter sequences of 55,986 annotated genes were analyzed using the Perl program algorithm to detect WRKY13 binding motifs (bm). The resulting genes were grouped using Gene Ontology and gene set enrichment analysis. A gene with more than 4 TF bm in their promoter was selected. Ten genes reported to have a role in rice disease resistance were selected for further analysis. Cis-acting regulatory element analysis was carried out to find the cis-elements and confirm the presence of the corresponding motifs in the promoter sequences of these genes. The 3D structure of WRKY13 TF and the corresponding ten genes were built, and the interacting residues were determined. The binding capacity of WRKY13 to the promoter of these selected genes was analyzed using docking studies. WRKY13 was considered for docking analysis based on the prior reports of autoregulation. Molecular dynamic simulations provided more details regarding the interactions. Expression data revealed the expression of the genes that helped provide the mechanism of interaction. Further co-expression network helped to characterize the interaction of these selected disease resistance-related genes with the WRKY13 TF protein. This study suggests downstream target genes that are regulated by the WRKY13 TF. The molecular mechanism involving the gene network regulated by WRKY13 TF in disease resistance against rice fungal pathogens is explored.


Subject(s)
Oryza , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Oryza/metabolism , Disease Resistance/genetics , Promoter Regions, Genetic , Gene Regulatory Networks
3.
Int J Biol Macromol ; 242(Pt 2): 124836, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37201887

ABSTRACT

Picloram (PC) is a systemic herbicide that controls herbaceous weeds and woody plants. HSA, the most abundant protein in human physiology, binds to all exogenic and endogenic ligands. PC is a stable molecule (t1/2∼157-513 days) and a potential threat to human health via the food chain. HSA and PC binding study has been done to decipher the location and thermodynamics of binding. It has been studied with prediction tools like autodocking and MD simulation and then confirmed with fluorescence spectroscopy. HSA fluorescence was quenched by PC at pH 7.4 (N state), pH 3.5 (F state), and pH 7.4 with 4.5 M urea (I state) at temperatures 283 K, 297 K, and 303 K. The location of binding was found to be interdomain between II and III which overlaps with drug binding site 2. The binding was spontaneous, and entropy-driven that show a noticeable increase in binding with the increase in temperature. No secondary structure change at the native state has been observed due to binding. The binding results are important to understand the physiological assimilation of PC. In silico predictions and the results of spectroscopic studies unambiguously indicate the locus and nature of the binding.


Subject(s)
Picloram , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Protein Binding , Molecular Docking Simulation , Thermodynamics , Spectrometry, Fluorescence , Binding Sites , Circular Dichroism
4.
Clin Transl Oncol ; 25(11): 3057-3072, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37079210

ABSTRACT

Triple-negative breast cancer (TNBC) is the most invasive molecular subtype of breast cancer (BC), accounting for about nearly 15% of all BC cases reported annually. The absence of the three major BC hormone receptors, Estrogen (ER), Progesterone (PR), and Human Epidermal Growth Factor 2 (HER2) receptor, accounts for the characteristic "Triple negative" phraseology. The absence of these marked receptors makes this cancer insensitive to classical endocrine therapeutic approaches. Hence, the available treatment options remain solemnly limited to only conventional realms of chemotherapy and radiation therapy. Moreover, these therapeutic regimes are often accompanied by numerous treatment side-effects that account for early distant metastasis, relapse, and shorter overall survival in TNBC patients. The rigorous ongoing research in the field of clinical oncology has identified certain gene-based selective tumor-targeting susceptibilities, which are known to account for the molecular fallacies and mutation-based genetic alterations that develop the progression of TNBC. One such promising approach is synthetic lethality, which identifies novel drug targets of cancer, from undruggable oncogenes or tumor-suppressor genes, which cannot be otherwise clasped by the conventional approaches of mutational analysis. Herein, a holistic scientific review is presented, to undermine the mechanisms of synthetic lethal (SL) interactions in TNBC, the epigenetic crosstalks encountered, the role of Poly (ADP-ribose) polymerase inhibitors (PARPi) in inducing SL interactions, and the limitations faced by the lethal interactors. Thus, the future predicament of synthetic lethal interactions in the advancement of modern translational TNBC research is assessed with specific emphasis on patient-specific personalized medicine.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Synthetic Lethal Mutations , Neoplasm Recurrence, Local/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Mutation
5.
Mol Biotechnol ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36732462

ABSTRACT

Triple-negative breast cancer (TNBC), is diagnosed as the most lethal molecular subtype of breast cancer (BC) preceded by an extremely poor prognosis. For enabling effective TNBC therapy, the identification of novel druggable biomarkers is an earnest need. Multigene paneling and genomewide association studies identify multiple genes with high-to-moderate penetrance in TNBC. Modern computer-aided drug designing techniques, thus aim to design more cost-effective natural small molecule inhibitors for TNBC prevention and diagnosis. Here Amygdalin, a natural glycosidic inhibitor is docked and simulated against three such high-to-moderate penetrance genes identified in TNBC, BARD1, RAD51, and PALB2. The preliminary result of the analysis, reports a highest, intermediate, and least binding energy score of - 6.69 kcal/mol, - 5.09 kcal/mol, and - 4.89 kcal/mol in BARD1, RAD51, and PALB2, respectively. The best-docked protein-ligand complex (BARD1-Amygdalin) was then simulated and compared with an approved drug for TNBC treatment, Olaparib. A comparable binding energy score of - 8.53 kcal/mol was obtained by docking olaparib with BARD1. A 100 ns MD simulation revealed, Amygdalin forms more H-bonds, providing more stable and compact protein-ligand complex with BARD1 than compared to Olaparib. The result was also supported by calculation of solvent accessible surface area and analysis of radius of gyration. Thus, our findings suggest that role of Amygdalin can further be studied in details for TNBC therapeutics, which was found to target the BRCT domain of the BARD1 receptor in stable manner. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. Name and affiliations are correctly identified.

6.
J Biomol Struct Dyn ; 40(7): 3132-3143, 2022 04.
Article in English | MEDLINE | ID: mdl-33183179

ABSTRACT

PTEN is a tumour suppressor gene known for regulating apoptosis, cell growth, and many other pathways. It is one of the most frequently mutated genes comprising the phosphatase domain (PD) and C terminal domain (C2). Direct therapeutic methods are not applicable for targeting PTEN because once gets mutated, it needs restoration. For mutant detection and restoration using PTEN mRNA there is a need to explore various mutations taking place in PTEN, identify their particular domains, and study their interactions within the cellular system. Here, we have tried to highlight a few such regions in the mutated PTEN of breast cancer patients. In this study, we have selected the top-most-occurring PTEN mutation in breast cancer and compared them to determine the specific properties of each mutation and its effect on functionality. Molecular dynamic simulation for 50 ns was performed on five structures to compare the structural behaviour of mutated PTEN in the system. Our finding suggests that frameshift mutations are more damaging and affect the c2 domain. Frameshift mutant fs_ACTT is the highest occurring as well as the most damaging mutation in all the compared structures. Docking study shows that substitution mutations D92H and R130Q causes loss of binding ability towards PIP2 in normal PTEN, interfering the dephosphorylation process. Overall, the C2 domain is more frequently mutated, and the amino acid residues in the C2 domain show more fluctuations compared to the other regions. Our study can provide the basis for selecting frequently mutated C2 domain as a potential therapeutic marker.Communicated by Ramaswamy H. Sarma.


Subject(s)
Breast Neoplasms , Molecular Dynamics Simulation , Biomarkers , Breast Neoplasms/genetics , C2 Domains , Female , Frameshift Mutation/genetics , Humans , Mutation , PTEN Phosphohydrolase/genetics
7.
J Biomol Struct Dyn ; 38(6): 1810-1821, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31107186

ABSTRACT

GATA3 is a transcription factor, known to regulate the transcriptional network and several pathways using two zinc fingers. Its mutation is associated with a higher risk of breast cancer. The molecular mechanisms of these mutations are poorly understood. It recognizes -GATA- sites on the DNA, using its two zinc fingers ZnFn1 and ZnFn2. Mutations in ZnFn2 have been studied in the past and well known but recently ZnFn1 mutations are also being reported very frequently in breast cancer patients and there is very less knowledge available regarding the binding modes and mechanism. Here, we have investigated the structural and functional impact of GATA3 mutation M294K on the DNA-binding property. The structure was obtained and mutation was induced before subjecting it to the molecular docking followed by MD simulation. Our findings indicate that the somatic mutation M294K, reported in the GATA3 gene destabilizes the unbound structure but, when it forms the DNA-complex, its overall structural stability is restored by the wrapping architecture of ZnFn2 around the DNA in the palindromic region, leading to the enhanced kinetic stability. The mutation not only affects the ZnFn1 region alone but also influences the whole complex by inducing the conformational changes in the linker region between the two zinc fingers, bringing the two zinc fingers to closer proximity representing the flexibility in binding sites. Our findings provide a better understanding of ZnFn1 mutations and the possibility of a different strategy to target these genes for their clinical relevance.Communicated by Ramaswamy H. Sarma.


Subject(s)
Breast Neoplasms , GATA3 Transcription Factor/genetics , Zinc Fingers , Breast Neoplasms/genetics , Female , Humans , Molecular Docking Simulation , Mutation , Zinc Fingers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...